首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
田钧祥  陈铁  陈彬 《中国电力》2023,(11):128-133
针对中压配电网缺少实时量测、伪量测精度较低以及现有的动态状态估计(dynamic state estimation,DSE)方法均采用恒定系统处理状态过程噪声的问题,提出了一种基于改进自适应无迹卡尔曼滤波(unscented kalman filter,UKF)算法的中压配电网鲁棒DSE方法。首先,利用中压配电网变压器低压侧的智能电表量测和变压器模型,推导出等效中压量测以增强中压配网量测冗余度;然后,借鉴信号处理技术对系统状态过程噪声的协方差矩阵实时更新并融入UKF算法,以减轻状态预测和量测滤波的不确定性;最后,基于15节点中压配电网进行仿真。仿真结果表明:所提方法能够有效地进行中压配电网的动态状态估计,获取更为精确的态势感知信息。  相似文献   

2.
随着智能配电网监测技术的发展及应用,网络中大量的数据传输会造成通信信道拥堵,导致数据丢失、传输延时等网络化诱导现象,进而严重影响配电网状态估计的性能.为了提高配电网量测数据的传输效率,在网络传输过程中引入事件触发机制,在保证系统状态估计性能的前提下,尽可能减少网络中的数据传输量.针对事件触发机制的引入造成的量测信息不完...  相似文献   

3.
随着大量分布式电源和电动汽车接入配电网,DG出力难以预测以及负荷监控复杂是配电网运行管理的难题。针对传统无迹卡尔曼滤波预测误差大,且容易受不良数据影响的问题,利用新息向量构造了自适应因子,提出自适应无迹卡尔曼滤波(Adaptive Unscented Kalman Filter,AUKF)算法对配电网进行状态估计。当系统负荷突变以及量测存在不良数据时,利用自适应因子对相应的预测协方差矩阵进行在线修正,减小了预测误差对估计精度的影响。在三相不平衡配电网中进行仿真分析,结果表明,AUKF算法比UKF估计精度高、鲁棒性强,验证了所提算法的有效性。  相似文献   

4.
同步相量测量单元(PMU)能够对电力系统动态过程中发电机功角进行直接量测。然而,坏数据有可能导致状态估计准确度下降甚至失效。提出了一种基于鲁棒性容积卡尔曼滤波(CKF)的机电暂态过程发电机动态状态估计方法。在CKF中构造时变多维观测噪声尺度因子,根据量测新息对PMU量测误差进行调整,使得量测量能够对状态量预报值进行准确修正。给出了时变多维观测噪声尺度因子的具体构造方法。针对滤波增益求逆发生奇异的问题,提出解决方案,对鲁棒CKF动态状态估计过程进行说明。仿真结果表明该方法能够有效抑制量测坏数据对动态状态估计的影响。  相似文献   

5.
随着当前智能电网技术的高速发展,电力系统的组成和运行方式愈发复杂,对状态估计的鲁棒性和实时性也产生了更高的需求.为此,提出一种基于动态分区和多估计准则的电力系统自适应鲁棒状态估计.通过模糊c均值聚类筛选出系统中的可疑量测集,进而根据可疑量测的空间分布实现系统动态分区.考虑到不同估计器各自的特点和适应性,针对可疑量测区域...  相似文献   

6.
针对配电网中分布式发电机等设备的非线性特性和配电网量测配置特点,结合粒子群优化算法(PSO)的特点.提出了采用自适应免疫PSO算法进行配电网状态估计的思路.该算法引入免疫系统的免疫信息处理机制和自动调整动量系数的自适应因子的粒子群算法.解决了配电网状态估计中的非线性问题,克服了基本PSO算法容易陷入局部最优解的缺点,不仅增强了全局搜索能力,而且获得了理想的收敛速度和精度.算例证实了该算法的有效性,与基本粒子群算法的比较,显示了其优越性.  相似文献   

7.
彭谦  杨以涵 《电网技术》2007,31(8):83-86
文中给出一种修正导纳的状态估计方法。通过修正注入节点的等效导纳,逐步迭代减小导纳的偏差,理论推导证明了该方法的正确性。应用IEEE 30节点算例仿真表明,该方法精度高、计算速度快、编程简单、适于配电网状态估计。  相似文献   

8.
传统动态谐波状态估计的卡尔曼滤波预测步通常以单位阵构建状态空间模型,同时将系统噪声协方差矩阵假设为常数阵,从而导致动态估计预测精度降低,影响动态状态估计模型的滤波性能。为了准确建立谐波状态的空间模型,提出一种基于长短期记忆网络(Long Short-Term Memory, LSTM)的时序预测方法。通过大量历史数据离线训练模拟复杂的状态转移过程,基于历史时刻的滤波估计值预测当前时刻的谐波状态量,有效提高无迹卡尔曼滤波(Unscented Kalman Filter, UKF)中预测模型精度。在改进IEEE34节点三相不平衡系统上进行了测试分析。与传统算法进行对比,结果证明所提出的方法在谐波状态估计精度和鲁棒性方面均表现更好。  相似文献   

9.
针对动态状态估计中传统无迹卡尔曼滤波(UKF)采样方法的不足,对UKF算法进行改进,每次估计实时调节比例修正因子,提高滤波性能。动态状态估计结果精度受量测粗差影响较大,为此提出一种鲁棒无迹卡尔曼滤波(RUKF)算法,引入粗差判据检测粗差,通过增强因子来降低粗差对系统状态估计结果的影响。将RUKF算法运用于电力系统动态状态估计,仿真结果表明,该算法具有良好的估计性能及较强的鲁棒性。  相似文献   

10.
石倩  刘敏 《电测与仪表》2023,60(10):87-91
配电网中分布式电源的渗透率逐渐升高,为确保配电网安全稳定的运行,需要对配电网运行状态进行准确的感知。针对容积卡尔曼滤波(Cubature Kalman Filter, CKF)算法对强非线性非高斯系统滤波精度有限、标准粒子滤波(Particle Filter, PF)选取重要性密度函数不准确的问题,提出了基于容积粒子滤波(Cubature Particle Filter, CPF)的配电网动态状态估计模型:利用CKF算法设计PF的重要性密度函数。既克服了CKF算法要求噪声为高斯分布的限制又保留了PF算法的强抗干扰能力。仿真结果表明,在高斯噪声和非高斯噪声下,CPF算法比CKF算法滤波精度更高、更灵活。  相似文献   

11.
为解决电力系统动态状态估计准确性易受量测不良数据影响的问题,提出基于无迹卡尔曼滤波(Unscented Kalman Filter,UKF)的电力系统抗差动态估计方法。在预测过程中引入时变噪声估计器处理未知系统噪声;利用新息向量判断量测是否存在异常,并使用基于测点正常率最大的静态估计方法辨识不良数据;然后构建更新因子矩阵降低不良数据在动态估计更新过程中的影响。将算法运用于IEEE 14节点标准系统中,仿真结果表明该方法估计结果准确且抗差效果良好。  相似文献   

12.
电力计量计费数据是电力营销业务公平公正实施的重要基础,具有数量总量大、通信方式多样等特点。为更加合理地利用通信资源并提升数据的可靠性,提出了一种动态传输下的改进扩展卡尔曼滤波方法用于电力计量计费数据的动态状态估计。首先,利用动态传输策略有选择地将区域电力计量计费数据传输到用户用电信息采集平台。然后,提出了一种改进扩展卡尔曼滤波方法,对电力计量计费数据进行动态状态估计,该算法利用不确定项表示线性化误差,在保证状态估计精度的基础上提高了计算速度。最后,用标准的IEEE-33配电网用户电表数据案例验证了该算法的可行性。  相似文献   

13.
连鸿松  张少涵  张逸 《陕西电力》2020,(6):14-19,53
由于传统的谐波状态估计的参数辨识算法要求噪声的协方差矩阵固定不变,而实际工程中噪声的协方差矩阵是随时间变化的,工程中存在错误的量测数据,导致传统参数辨识算法估计的谐波电流参数的准确度较低。因此,提出自适应容积卡尔曼滤波算法来提高辨识谐波电流参数的准确度。首先,针对时变噪声干扰,采用基于渐消记忆指数加权法的噪声估值器算法生成时变噪声的协方差矩阵;其次,针对错误的量测数据,采用开窗估计算法修正错误的量测数据;然后,将修正的噪声协方差矩阵和量测数据代入容积卡尔曼滤波算法中,对谐波电流参数进行估计;最后,搭建IEEE 13节点系统仿真模型,验证了自适应容积卡尔曼滤波算法在时变噪声干扰及量测数据错误情况下仍可准确地估计谐波电流参数,确保了动态谐波状态估计的准确性。  相似文献   

14.
In this paper, a robust adaptive unscented Kalman filter(RAUKF) is developed to mitigate the unfavorable effects derived from uncertainties in noise and in the model. To address these issues, a robust M-estimator is first utilized to update the measurement noise covariance. Next, to deal with the effects of model parameter errors while considering the computational complexity and real-time requirements of dynamic state estimation, an adaptive update method is produced. The proposed method is int...  相似文献   

15.
基于综合预测和自适应滤波器的电力系统动态状态估计   总被引:3,自引:1,他引:3  
对基于扩展卡尔曼滤波(EKF)原理的动态状态估计理论进行了深入的分析,并指出其存在的问题的此基础上,提出具有自适应能力的动态状态估计模型和算法.该模型和算法的新意主要体现在:在预测环节中,建立系统节点注入功率制约作用和系统状态自身预测融合的加权优化综合预测模型,提高了状态预估的精度;在滤波环节中,基于最小二乘支持向量机技术,建立了自适应的限定记忆动态滤波器,提高了模型的估计能力和计算速度.对山东500 kV电网进行的实际分析,充分表明了该方法的有效性.  相似文献   

16.
同步相量测量单元(PMU)能够直接获取发电机动态过程中的功角等量测数据,由于实际的量测数据中含有随机噪声,为了得到更精确的发电机状态信息,有必要对量测数据进行滤波处理。提出一种基于无迹粒子滤波(UPF)的发电机动态状态估计新方法。首先,该方法基于发电机四阶动态方程建立了发电机动态状态估计模型,其次,在粒子滤波(PF)的框架下,该方法采用无迹卡尔曼滤波(UKF)求解PF的重要性密度函数,且在生成预测粒子的过程中使用了最新的量测信息,使得粒子的分布更加接近真实状态的后验概率分布。最后,通过美国西部系统协调委员会(WSCC)3机9节点系统和某实际电网系统的算例测试,将所提算法与UKF及PF的性能进行了对比。仿真结果表明,UPF在估计精度及对噪声的鲁棒性方面均优于PF与UKF。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号