首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
This paper describes the fabrication of microtubular biosensors and sensor arrays based on polyaniline with superior transducing ability. These sensors have been tested for the estimation of glucose, urea, and triglycerides. As compared to that of a macro sensor, the response of the microtubular sensor for glucose is higher by a factor of more than 10(3). Isoporous polycarbonate membranes have been used to fabricate inexpensive devices by simple thermal evaporation of gold using appropriate machined masks. Polyaniline deposition and enzyme immobilization have been done electrochemically. Electrochemical potential control has been used to direct enzyme immobilization to the chosen membrane device and avoid cross talk with adjacent devices. This has enabled the immobilization of a set of three different enzymes on three closely spaced devices, resulting in a microtubule array that can analyze a sample containing a mixture of glucose, urea, and triglycerides in a single measurement. This, in essence, is an "electronic tongue".  相似文献   

2.
Oxygen optrode for use in a fiber-optic glucose biosensor   总被引:2,自引:0,他引:2  
An optical fiber oxygen sensor, based on the dynamic quenching of the luminescence of tris(1,10-phenanthroline)-ruthenium(II) cation by molecular oxygen, is presented. The complex is adsorbed onto silica gel, incorporated in a silicone matrix possessing a high oxygen permeability, and placed at the tip of the optical fiber. Oxygen has been monitored continuously in the 0-750 Torr range, with the detection limit being as low as 0.7 Torr. The device has been applied to the development of a fast responding and highly sensitive fiber-optic glucose biosensor based on this highly sensitive oxygen transducer. The sensor relates oxygen consumption (as a result of enzymatic oxidation) to glucose concentration. The enzyme is immobilized on the surface of the oxygen optrode; carbon black is used as an optical isolation in order to prevent ambient light and sample fluorescence to interfere. Measurements have been performed in a flow-through cell in air-equilibrated glucose standard solutions of pH 7.0. The effects of enzyme immobilization procedures (including enzyme immobilization on carbon black) as to response times (around 6 min), analytical ranges (0.06-1 mM glucose), reproducibility in sensor construction, and long-term stability have been studied as well.  相似文献   

3.
Microtubule sensors for glucose, urea, and triglyceride were fabricated based on poly(styrene sulfonate)-polyaniline (PSS-PANI) composites synthesized within the pores of track-etched polycarbonate membranes. The synthesis of a sufficiently thick and conducting PSS-PANI film at pH 5 provided the advantage of immobilizing enzymes during polymerization. This resulted in the improvement of sensor response for urea and triglyceride by a factor of approximately 10(2) with a significant increase in the linear region of response compared to polyaniline-based sensors, where the enzymes were immobilized by physical adsorption after the polymerization. The sensors based on urea and triglyceride were found to have a higher linear range of response, better sensitivity, improved multiple use capability, and faster response time compared to the potentiometric and amperometric sensors based on polyaniline. A microtubule sensor array for glucose, urea, and triglyceride based on PSS-PANI was fabricated by immobilization of three different sets of enzymes on three closely spaced devices and its response was found to be free from cross-interference when a sample containing a mixture of the above analytes was analyzed in a single measurement.  相似文献   

4.
Diagnosis and management of diabetes require quantitative and selective detection of blood glucose levels. We report a technique for micromechanical detection of biologically relevant glucose concentrations by immobilization of glucose oxidase (GOx) onto a microcantilever surface. Microfabricated cantilevers have traditionally found utility in atomic force microscope imaging. During the past decade, however, microcantilevers have been increasingly used as transducers in chemical-sensing systems. This paper describes the combination of this technology with enzyme specificity to construct a highly selective glucose biosensor. The enzyme-functionalized microcantilever undergoes bending due to a change in surface stress induced by the reaction between glucose in solution and the GOx immobilized on the cantilever surface. Experiments were carried out under flow conditions. The common interferences for glucose detection in other detection schemes have been tested and have shown to have no effect on the measurement of blood glucose level by this technique.  相似文献   

5.
Glucose biosensors based on dendrimer monolayers   总被引:1,自引:0,他引:1  
The peculiarities of glucose biosensors based on different generation of dendrimers (G0, G1 and G4) have been studied by amperometry and QCM techniques. It is shown that stable glucose biosensor can be obtained with low generation of dendrimers. The sensor sensitivity, however considerable, increased with increasing number of generation of dendrimers. This can be due to the increased volume of the dendrimer interior as well as with increased number of binding sites for glucose oxidase (GOX). QCM experiments showed that immobilization of GOX resulted in formation of enzyme multilayers on a dendrimer surface. The enzyme turnover for this system (0.1-0.01 s(-1)) was lower then that for immobilization of GOX onto a supported lipid films by means of avidin-biotin technology (1.1 s(-1)). However, dendrimer based biosensors are more stable in comparison with sBLM based sensors and could be stored in a refrigerator in dry conditions over 15 days without substantial loss of sensitivity.  相似文献   

6.
基于生物素-亲和素系统的酶固定化及纳米金增效的研究   总被引:3,自引:0,他引:3  
应用石英晶体微天平(QCM)研究了基于生物素一亲和素系统的葡萄糖氧化酶的固定化,探讨了纳米金修饰QCM金基片对酶固定化的一系列过程的影响。在本实验条件下,利用生物素.亲和素系统能较好地固定化葡萄糖氧化酶,经过纳米金颗粒修饰的QCM基片对酶的吸附量比未经修饰的基片可提高1倍以上。  相似文献   

7.
金属与非金属纳米颗粒增强葡萄糖生物传感器   总被引:3,自引:1,他引:3  
为了提高葡萄糖传感器的灵敏度和抗干扰性,利用纳米增强效应,以Au、Ag、Pt、SiO2纳米颗粒及金属-无机复合纳米颗粒与聚乙烯醇缩丁醛(PVB)构成复合固定酶膜基质,采用溶胶-凝胶法固定葡萄糖氧化酶(GOD),组成葡萄糖生物传感器.研究表明,纳米颗粒可以大幅度地提高固定化酶的催化活性,增加电极的电流响应灵敏度,改进生物传感器的抗干扰性能,使信噪比提高了32倍.  相似文献   

8.
Sung WJ  Bae YH 《Analytical chemistry》2000,72(9):2177-2181
An enzyme immobilization method has been developed by electropolymerization chemistry of conducting polymer which results in a more effective and reproducible enzyme electrode. As a model system, in this study, glucose oxidase (GOD) was conjugated with a polyanion, poly(2-acrylamido-2-methylpropane sulfonic acid), via a poly(ethylene oxide) spacer to improve the efficiency of enzyme immobilization into a conducting polymer. GOD was successfully conjugated with a high conjugation yield of more than 90%, and its bioactivity was preserved. The resulting polyanion-GOD conjugate was used as a dopant for the electrochemical polymerization of pyrrole. Polypyrrole was effectively deposited on a Pt wire working electrode with the polyanion-GOD conjugate. The enzyme electrode responded to glucose concentrations of up to 20 mM with a sensitivity of 40 nA/mM at an applied potential of 0.4 V within a response time of 30 s. Although the response signal decreased at the low applied potential of 0.3 V, the enzyme electrode showed sensitive response signals of about 16 nA/mM up to 20 mM in glucose concentration. Under the deoxygenated condition, reduced but clear response current signal was obtained. The results show that the current signal response of the enzyme electrode to glucose concentration may be produced by mixed mechanisms.  相似文献   

9.
Wang J  Chen L  Jiang M  Lu F 《Analytical chemistry》1999,71(21):5009-5011
The response of first-generation glucose oxidase (GOx) amperometric glucose biosensors is strongly dependent on the concentration of the oxygen cosubstrate. The incorporation of the natural oxygen binder myoglobin into a GOx-containing carbon-paste matrix is shown to satisfy the oxygen demand of the enzymatic reaction and to provide convenient biosensing of glucose in oxygen-free solutions. Such use of myoglobin-containing mineral oil thus offers an attractive alternative to the use of oxygen-rich fluorocarbon pasting liquids. Further improvements are observed upon doping the fluorocarbon oil with myoglobin. Factors affecting the oxygen independence of the new enzyme microelectrodes, including the myoglobin loading or length of the oxygen reservoir, have been optimized. The myoglobin-doped mineral oil or Kel-F-based carbon-paste enzyme microelectrodes display a highly stable glucose response over prolonged (6-7 h) operations in oxygen-free solutions, indicating no depletion of the internal oxygen supply.  相似文献   

10.
Carboxylated styrene acrylate latex samples have been functionalized by the immobilization and entrapment of the enzyme glucose oxidase (GOx), which can be used as an oxygen scavenger in food packaging. GOx was covalently immobilized both on the surface of already formed films and on the latex particles in dispersion, as well as entrapped within the polymer matrix. In the latter two cases, polymer films were formed after the enzyme had been added to the latex dispersion. The storage stability of the enzyme and the influence of adding clay were also studied. For a given amount of enzyme, the enzyme immobilized on the film surface showed an enzyme activity about 10 times higher than that of the enzyme present within the polymer matrix. This is probably due to the diffusion limitations of the substrate in the polymer matrix. The films with the enzyme present within the polymer matrix, however, showed a higher total oxygen‐removal capacity than films with the enzyme immobilized on the surface. Entrapped enzyme showed a slightly higher activity than enzyme immobilized in the dispersion due to the negative effect of the activating chemicals used during the immobilization and on conformational constraints upon covalent bonding. Low amounts of clay added to the dispersion decreased the enzyme activity, but with higher amounts of clay the enzyme activity increased, probably because of the increased porosity and thus higher substrate accessibility. The most suitable storage condition for all the enzyme‐containing films was +8°C, which is just above the glass transition temperature of the polymer used. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Micrometer-sized enzyme grids were fabricated on gold surfaces using a novel method based on a flow-through microdispenser. The method involves dispensing very small droplets of enzyme solution (approximately 100 pL) during the concomitant relative movement of a gold substrate with respect to the nozzle of a microdispenser, resulting in enzyme patterns with a line width of approximately 100 microm. Different immobilization methods have been evaluated, yielding either enzyme monolayers using functionalized self-assembled thiol monolayers for covalent binding of the enzyme or enzyme multilayers by cross-linking or entrapping the enzymes in a polymer film. The latter immobilization techniques allow the formation of coupled multienzyme structures. On the basis of this feature, coupled bienzyme (glucose oxidase and catalase) or three-enzyme (alpha-glucosidase, mutarotase, and glucose oxidase) microstructures consisting of line patterns of one enzyme intersecting with the patterned lines of the other enzyme(s) were fabricated. By means of scanning electrochemical microscopy (SECM) operated in the generator-collector mode, the enzyme microstructures and their integrity were visualized using the localized detection of enzymatically produced/consumed H2O2. A calibration curve for glucose could be obtained by subsequent SECM line scans over a glucose oxidase microstructure for increasing glucose concentrations, demonstrating the possibility of obtaining localized quantitative data from the prepared microstructures. Possible applications of these enzyme microstructures for multianalyte detection and interference elimination and for screening of different biosensor configurations are highlighted.  相似文献   

12.
o-Phenylenediamine has been used for glucose oxidase (GOx) immobilization on Pt electrodes by electrochemical polymerization at +0.65 V vs SCE. By this approach the enzyme is entrapped in a strongly adherent, highly reproducible thin membrane, whose thickness is around 10 nm. This one-step procedure produces a glucose sensor with a response time less than 1 s, an active enzyme loading higher than 3 units/cm2 of electrode surface, a high sensitivity, and a sufficiently wide linear range. The glucose response shows an apparent Michaelis-Menten constant, K'm = 14.2 mM, and a limiting current density, jmax of 181 microA/cm2. The product kD of partition and diffusion coefficients of glucose in the polymer film is on the order of 10(-13) cm2/s. Due to permselectivity characteristics of the membrane, the access of ascorbate, a common interfering species, to the electrode surface is blocked. To our knowledge, this represents the first report of a membrane capable, at the same time, of immobilizing GOx and rejecting ascorbate. The interesting electrode behavior can be rationalized by using an existing model predicting the amperometric response of an immobilized GOx system.  相似文献   

13.
A procedure is described that provides for electrochemically mediated deposition of enzyme and a polymer layer permselective for endogenous electroactive species. Electrodeposition was first employed for the direct immobilization of glucose oxidase to produce a uniform, thin, and compact film on a Pt electrode. Electropolymerization of phenol was then employed to form an anti-interference and protective polyphenol film within the enzyme layer. In addition, a stability-reinforcing membrane derived from (3-aminopropyl)trimethoxysilane was constructed by electrochemically assisted cross-linking. This hybrid film outside the enzyme layer contributed to the improved stability and permselectivity. The resulting glucose sensor was characterized by a short response time (<4 s), high sensitivity (1200 nA/mM x cm2), low interference from endogenous electroactive species, and working lifetime of more than 50 days.  相似文献   

14.
A self-referencing technique utilizing two microelectrodes on a ceramic-based multisite array is employed for confirmation and elimination of interferences detected by enzyme-based microelectrodes. The measurement of L-glutamate using glutamate oxidase was the test system; however, other oxidase enzymes such as glucose oxidase can be employed. One recording site was coated with Nafion with L-glutamate oxidase and bovine serum albumin (BSA) cross-linked with glutaraldehyde while the other had Nafion with BSA cross-linked with glutaraldehyde. Differences in the chemistry of the two recording sites allowed for identification and elimination of interfering signals to be removed from the analyte response. The electrode showed low detection limits (LOD = 0.98 +/- 0.09 microM, signal-to-noise ratio of 3), fast response times (T90 approximately 1 s), and excellent linearity (R2 = 0.999 +/- 0.000) over the concentration range of 0-200 microM for calibrations of L-glutamate in vitro. The selectivity and dimensions of the multisite electrode allow in vivo glutamate measurements. This electrode has been applied to in vivo measurements of the clearance of locally applied glutamate and release of glutamate in the prefrontal cortex of anesthetized rats. In addition, a aimilar approach has been applied to the development of a microelectrode for measures of glucose.  相似文献   

15.
Wei X  Cruz J  Gorski W 《Analytical chemistry》2002,74(19):5039-5046
A new film-forming solution was developed for the efficient immobilization of enzymes on solid substrates. The solution consisted of a biopolymer, chitosan (CHIT), that was chemically modified with a permeability-controlling agent, Acetyl Yellow 9 (AY9), using glutaric dialdehyde (GDI) as a molecular tether. A model enzyme, glucose oxidase (GOx), was mixed with the CHIT-GDI-AY9 solution and cast on the surface of platinum electrodes to form robust CHIT-GDI-AY9-GOx films for glucose biosensing. UV-visible and infrared spectroscopies were used to determine the composition of the films. The optimized films contained on average 1 molecule of AY9/3 glucosamine units of chitosan and 25 free GDI tethers/1 molecule of GOx. The electrochemical assays of the films indicated both a very high efficiency of enzyme immobilization (approximately 99%) and large enzyme activity (60 units cm(-2)). The latter translated into a high sensitivity (42 mA M(-1) cm(-2)) of the Pt/CHIT-GDI-AY9-GOx biosensor toward glucose. The biosensor operated at 0.450 V, had a fast response time (t90% < or = 3 s), and was free of typical interferences, and its dynamic range covered 3 orders of magnitude of glucose concentrations. The lowest actually detectable concentration was 10 microM glucose. In addition, the biosensor displayed a practical shelf life and excellent operational stability, e.g. its response was stable during 24-h testing under continuous polarization and continuous flow of 5.0 mM glucose solution. The proposed approach to enzyme immobilization is simple, efficient, and cost-effective and should be of importance in the development of biosensors based on other enzymes that are more expensive than glucose oxidase.  相似文献   

16.
Urease is an enzyme which decomposes urea into NH3 and CO2. We can produce a urea sensor by immobilizing urease on the pH sensor, and the Langmuir-Blodgett (LB) method has been expected to be useful as one of the immobilizing methods. We have measured for the first time the amount of urease adsorbed onto the LB film and shown that the relationship between the amount of adsorbed urease and the concentration in the solution can be expressed by an equation similar to the Langmuir adsorption isotherm.  相似文献   

17.
The use of alternating current conductometric transducers in biosensing devices has been investigated for urea and D-amino acid sensors using the enzyme systems urease and D-amino acid oxidase/catalase. Transducers with copper and platinum electrodes were constructed and characterized, and two enzyme immobilization methods were tested. Detection limits of 1 x 10(-6)M and linear ranges of 2 orders of magnitude were routinely achieved for these model sensors with enzymes covalently immobilized on collagen films.  相似文献   

18.
Production and downstream processing in biotechnology requires fast and accurate control of each step in the process. Improved techniques which can be validated are required in order to meet these demands. For these purposes, chromatographic units containing compact porous disks for fast separation of biopolymers were developed and investigated with regard to their performance and speed. The problems that have, in the past, arisen from the use of wide and flat separation units, such as membranes and disks, have chiefly been those of sample distribution and large void volumes before and behind the unit. Improvements in the construction of the cartridge have led to better performance of the compact porous disks and faster separation. Using these disks, three calibration standard proteins could be separated within less than 1 min by an anion-exchange, cation-exchange, and hydrophobic interaction mode. Such units can be used for in-process control in production and downstream processing of biopolymers, as was shown in experiments involving the purification of α(1)-antitrypsin and clotting factor IX and the immobilization of enzyme glucose oxidase on an epoxy-activated compact porous disk.  相似文献   

19.
Biomimetic interfaces based on phosphatidylcholine (PC) assembled to the natural silicate sepiolite were prepared for the stable immobilization of the urease and cholesterol oxidase enzymes. This is an important issue in practical advanced applications such as biocatalysis or biosensing. The supported lipid bilayer (BL-PC), prepared from PC adsorption, was used for immobilization of enzymes and the resulting biomimetic systems were compared to several other supported layers including a lipid monolayer (ML-PC), a mixed phosphatidylcholine/octyl-galactoside layer (PC-OGal), a cetyltrimethylammonium monolayer (CTA), and also to the bare sepiolite surface. Interfacial characteristics of these layers were investigated with a focus on layer packing density, hydrophilicity/hydrophobicity, and surface charge, which are being considered as key points for enzyme immobilization and stabilization of their biological activity. Cytoplasmic urease and membrane-bound cholesterol oxidase, which served as model enzymes, were immobilized on the different PC-based hybrid materials to probe their biomimetic character. Enzymatic activity was assessed by cyclic voltammetry and UV-vis spectrophotometry. The resulting enzyme/bio-organoclay hybrids were applied as active phase of a voltammetric urea biosensor and cholesterol bioreactor, respectively. Urease supported on sepiolite/BL-PC proved to maintain its enzymatic activity over several months while immobilized cholesterol oxidase demonstrated high reusability as biocatalyst. The results emphasize the good preservation of bioactivity due to the accommodation of the enzymatic system within the biomimetic lipid interface on sepiolite.  相似文献   

20.
An optimal environment for glucose oxidase (GOx) in Nafion membranes is achieved using an advanced immobilization protocol based on a nonaqueous immobilization route. Exposure of glucose oxidase to water-organic mixtures with a high (85-95%) content of the organic solvent resulted in stabilization of the enzyme by a membrane-forming polyelectrolyte. Such an optimal environment leads to the highest enzyme specific activity in the resulting membrane, as desired for optimal use of the expensive oxidases. Casting solution containing glucose oxidase and Nafion is completely stable over 5 days in a refrigerator, providing almost absolute reproducibility of GOx-Nafion membranes. A glucose biosensor was prepared by casting the GOx-Nafion membranes over Prussian Blue-modified glassy carbon disk electrodes. The biosensor operated in the FIA mode allows the detection of glucose down to the 0.1 microM level, along with high sensitivity (0.05 A M(-1) cm(-2)), which is only 10 times lower than the sensitivity of the hydrogen peroxide transducer used. A comparison with the recently reported enzyme electrodes based on similar H2O2 transducers (transition metal hexacyanoferrates) shows that the proposed approach displays a dramatic (100-fold) improvement in sensitivity of the resulting biosensor. Combined with the attractive performance of a Prussian Blue-based hydrogen peroxide transducer, the proposed immobilization protocol provides a superior performance for first-generation glucose biosensors in term of sensitivity and detection limits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号