首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We report an online, optical injection interface for capillary zone electrophoresis (CZE) based upon photophysical activation of a caged, fluorogenic label covalently attached to the target analyte. This injection interface allows online analysis of biomolecular systems with high temporal resolution and high sensitivity. Samples are injected onto the separation capillary by photolysis of a caged-fluorescein label using the 351-364 nm irradiation of an Ar+ laser. Following injection, the sample is separated and detected via laser-induced fluorescence detection at 488 nm. Detection limits for online analysis of arginine, glutamic acid, and aspartic acid were less than 1 nM with separation times less than 5 s and separation efficiencies exceeding 1,000,000 plates/m. Rapid injection of proteins was demonstrated with migration times less than 500 ms and 0.5 nM detection limits. Online monitoring was performed with response times less than 20 s, suggesting the feasibility of this approach for online, in vivo analysis for a range of biologically relevant analytes.  相似文献   

2.
This paper demonstrates that most common drugs of abuse can be absorbed simultaneously onto a mixed-mode bonded-phase matrix and eluted sequentially in two to three steps for subsequent analysis by micellar electrokinetic capillary chromatography (MECC). Having on-column multiwavelength UV absorption detection, this is shown to be an attractive approach for confirmation testing of barbiturates, hypnotics, amphetamines, opioids, benzodiazepines, and metabolites of cocaine in a single aliquot of human urine. For these compounds, no hydroysis of the urine specimen or sample derivatization is required. Under the examined conditions using 5 mL of urine, excellent recoveries (80-90% level) and detection limits (about 100 ng/mL) are obtained. For patient urines which tested positively for different classes of drugs using immunological screening methods, a two-step extraction scheme is shown to provide extracts suitable for rapid MECC confirmation of the drugs of abuse.  相似文献   

3.
The concentration of S-nitrosothiols (RSNOs), endogenous transporters of the signaling molecule nitric oxide (NO), fluctuate greatly in physiology often as a function of disease state. RSNOs may be measured indirectly by cleaving the S-N bond and monitoring the liberated NO. While ultraviolet photolysis and reductive-based cleavage both decompose RSNOs to NO, poor selectivity and the need for additional reagents preclude their utility clinically. Herein, we report the coupling of visible photolysis (i.e., 500-550 nm) and amperometric NO detection to quantify RSNOs with greater selectivity and sensitivity. Enhanced sensitivity (up to 1.56 nA μM(-1)) and lowered theoretical detection limits (down to 30 nM) were achieved for low molecular weight RSNOs (i.e., S-nitrosoglutathione, S-nitrosocysteine) by tuning the irradiation exposure. Detection of nitrosated proteins (i.e., S-nitrosoalbumin) was also possible, albeit at a decreased sensitivity (0.11 nA μM(-1)). This detection scheme was used to measure RSNOs in plasma and illustrate the potential of this method for future physiological studies.  相似文献   

4.
Experiments designed to clarify the role of molecular oxygen in the photolysis of fullerene are described. The formation of oxygen-fullerene adducts, both in fullerene solutions in various solvents and in micro-crystallites formed by evaporating these solutions, and their photolysis was studied under various experimental conditions. The results confirm that the role of oxygen in the photolysis process in these systems is ambivalent and highly dependent on the conditions under which the irradiation of the fullerenes occurs (wavelength and intensity of the photolyzing radiation, character of the solvent molecules, presence of additional molecules in the solvent-fullerene-oxygen system, etc.).  相似文献   

5.
The kinetics of 2-chlorophenol (2-CP) degradation and mineralization in the aqueous phase was investigated under irradiation at 254 nm, employing either photocatalysis in the presence of titanium dioxide, or hydrogen peroxide photolysis, to compare the efficiency of these photoinduced advanced oxidation techniques. Photocatalysis under 315-400 nm wavelength irradiation was also investigated. The concentration versus time profiles of the degradation intermediates catechol, chloro- and hydroxy-hydroquinone allowed the identification of the reaction paths prevailing under the different experimental conditions. Efficient CCl bond cleavage occurred as a consequence of direct light absorption by 2-CP, while hydroxyl radicals, photogenerated at the water-photocatalyst interface or during H(2)O(2) photolysis, were the main oxidation agents, able to attack both 2-CP and its degradation intermediates. Highest degradation and mineralization efficiencies were achieved under H(2)O(2) photolysis at 254 nm.  相似文献   

6.
A commercialized thermal neutron analysis (TNA) sensor has been developed to confirm the presence of buried bulk explosives as part of a multi-sensor anti-tank landmine detection system. Continuing improvements to the TNA system have included the use of an electronic pulsed neutron generator that offers the possibility of applying fast neutron analysis (FNA) methods to improve the system's detection capability. This paper describes an investigation into the use of FNA as a complementary component in such a TNA system. The results of a modeling study using simple geometries and a full model of the TNA sensor head are presented, as well as preliminary results from an experimental associated particle imaging (API) system that supports the modeling study results. The investigation has concluded that the pulsed beam FNA approach would not improve the detection performance of a TNA system for landmine or buried IED detection in a confirmation role, and could not be made into a practical stand-alone detection system for buried anti-tank landmines. Detection of buried landmines and IEDs by FNA remains a possibility, however, through the use of the API technique.  相似文献   

7.
Abstract

Experiments designed to clarify the role of molecular oxygen in the photolysis of fullerene are described. The formation of oxygen-fullerene adducts, both in fullerene solutions in various solvents and in micro-crystallites formed by evaporating these solutions, and their photolysis was studied under various experimental conditions. The results confirm that the role of oxygen in the photolysis process in these systems is ambivalent and highly dependent on the conditions under which the irradiation of the fullerenes occurs (wavelength and intensity of the photolyzing radiation, character of the solvent molecules, presence of additional molecules in the solvent-fullerene-oxygen system, etc.).  相似文献   

8.
This paper describes a technique of characterizing microfluidic flow profiles from slow laminar flow to fast near-turbulent flow. Using a photo-activated fluorophore, nanosecond-duration photolysis pulses from a Nitrogen laser, and high-sensitivity single-molecule detection with Ar+ laser excitation, we report the measurement of flow speeds up to 47 m/s in a 33-microm-wide straight channel and the mapping of flow profiles in a 55-microm-wide microchamber. Sensitive single-molecule detection is necessary both because of the short time delay (submicrosecond) between laser photolysis and fluorescence detection and the fast transit times (as low as 10 ns) of the fluorescent molecules across the diffraction-limited beam waist of the Ar+ laser focus. This technique permits the high-resolution three-dimensional mapping and analysis of a wide range of velocity profiles in confined spaces that measure a few micrometers in dimension.  相似文献   

9.
The potential of gas chromatography coupled to tandem mass spectrometry (GC/MS/MS) with a triple quadrupole analyzer (QqQ) has been investigated for the accurate and sensitive determination of xenoestrogens in human breast tissues. Special emphasis has been given to the confirmation of the identity of compounds detected in the samples analyzed in order to avoid the reporting of false positives. The work has been focused on the determination of approximately 30 organochlorine compounds (PCBs and pesticides) and organobromine compounds (polybrominated diphenyl ethers) in adipose breast tissue and in tumoral fragment. Analytes were extracted by dissolving the samples in hexane, and the extracts were purified by automated normal-phase HPLC prior to GC/MS/MS analysis. Three isotopically labeled standards were added before extraction as surrogates for the quality control of the analyses. Accuracy and precision were evaluated by means of recovery experiments using adipose breast tissue spiked at three concentration levels, with satisfactory results for most analytes. The excellent selectivity and sensitivity of QqQ in selected reaction monitoring mode allowed us satisfactory quantification and confirmation at levels as low as 5-25 ng/g, i.e., the lowest concentration level for which the method was fully validated. Two MS/MS transitions were selected for each analyte, using the concentration ratio obtained from them as a confirmatory parameter. The developed methodology was applied to the analysis of 51 breast samples (26 adipose tissues and 25 tumoral fragments), giving as a result the detection and confirmation of several organochlorine compounds in both types of samples. Due to its adequate analytical characteristics, the optimized method fits with the requirements of accurate quantification and reliable confirmation of the identity of compounds detected according to the most recent European Guidelines. As an ultimate unequivocal confirmation, several selected samples were reanalyzed by gas chromatography coupled to mass spectrometry with a time-of-flight (TOF) analyzer. Confirmation of analytes present at higher concentrations was successful with mass error less than 5 mDa. However, confirmation by TOF MS was not possible al low concentrations (i.e., at the few ng/g level) as a consequence of its lower sensitivity compared with that of triple quadrupole in selected reaction monitoring mode.  相似文献   

10.
The analysis of spectral luminescence characteristics of disperse Si02 indicates the presence of two types of surface oxygen vacancies (O-VI and O-VII). Their concentrations can be decreased by means of near UV and IR laser irradiation. It is established that the O-V concentration decreasing under IR irradiation (λirr = 1064 nm) in air is caused by their laser annealing under seven-photon ionization of surface O-V with the participation of atomic oxygen formed near the surface under dissociation of atmospheric 02 molecules in the laser field. The irradiation by near UV laser light (λirr ~250-360 nm) leads to a lower effective O-V concentration with decreasing IR irradiation. The analysis of the dose dependence shows that in this case the observed effect is due to the interaction of surface O-V with bulk reagents (water, OH- groups, 02 centers) or their photolysis products, not with atmospheric oxygen. The choice of laser irradiation wavelength is important for selective effect on O-VI and O-VII concentrations.  相似文献   

11.
The present study is about the enhancement in ozone-mediated degradation and UV (254nm) photolysis of phenol in aqueous solutions by 300kHz acustic cavitation and the selection of operating parameters for optimum phenol removal efficiency. The method was based on monitoring of the concentration of phenol during 90min exposure to ozonation, sonication, UV photolysis, O(3)/ultrasound, UV/ultrasound and O(3)/UV/ultrasound operations. It was found that ozonation at alkaline pH was an effective method of phenol destruction, but it was considerably more effective when applied simultaneously with ultrasonic irradiation. The observed synergy particularly at alkaline pH was attributed to combined effects of: (i) increased ozone mass transfer (upon hydrodynamic shear forces created by ultrasonic bubbles) and (ii) excess hydroxyl radical formation (upon thermal decomposition of ozone in the gaseous cavity bubbles). Degradation of phenol by photolysis alone was negligible, while combination of UV-irradiation and ultrasound rendered considerable degrees of decay. The synergy here was explained by excess hydroxyl radicals that are formed by photolysis of ultrasound-generated H(2)O(2). Maximum rate of phenol degradation was observed in case of combined application of ozone, UV and ultrasound at basic pH.  相似文献   

12.
The photostability of fluorescent dyes is of crucial importance for the statistical accuracy of single-molecule detection (SMD) and for the image quality of scanning confocal microscopy. Concurrent results for the photostability were obtained by two different experimental techniques. First, the photostabilities of several coumarin and rhodamine derivatives in aqueous solution were obtained by monitoring the steady-state fluorescence decay in a quartz cell. Furthermore, an epi-illuminated microscope, continuous wave (CW) excitation at 514.5 nm, and fluorescence correlation spectroscopy (FCS) with a newly developed theory were used to study the photobleaching characteristics of rhodamines under conditions used for SMD. Depending on the rhodamine structure, the probability of photobleaching, p(b), is in the order of 10(-)(6)-10(-)(7) for irradiances below 10(3) W/cm(2). However, a considerable increase of p(b) for irradiances above this level was observed which can only be described by photobleaching reactions from higher excited states (two-step photolysis). In view of these observations, the probability of photobleaching, p(b), as well as a closed expression of its dependence on the CW excitation irradiance considering a five-level molecular electronic state model with the possibility of photobleaching from higher excited electronic states, is derived. From this model, optimal conditions for SMD with respect to the number of emitted fluorescence photons and to the signal-to-background ratio are discussed, taking into account both saturation and photobleaching. The additional photobleaching due to two-step photolysis limits the applicable irradiance.  相似文献   

13.
A new analytical strategy for the screening and confirmation/quantification of multiclass pesticide residues in vegetables has been established and validated. No complicated sample preparation was needed, but only a simple and rapid extraction using ethyl acetate and sodium sulfate, which required no cleanup. The approach is based on the use of the triple quadrupole (QqQ) mass spectrometry (MS) as detection system in gas chromatography (GC). In a first step, a GC-QqQ-MS screening method, which monitors only one MS/MS transition by compound, allows the identification of approximately 130 pesticides in 11.6 min. In this way, the differentiation between negative and potentially nonnegative samples is carried out. In the second step, the nonnegative samples are reanalyzed by the GC-QqQ-MS confirmation/quantification method, which monitors two or three MS/MS transitions by compound. Confirmation of pesticides was based on the comparison of intensity ratios for the main ions in samples with those obtained on the same day from the standard in a matrix containing the pesticides at a preestablished concentration level. Quantification of the identified and confirmed pesticides was based on the addition standard method, which avoids matrix effect. The proposed analytical strategy allowed a reliable identification and confirmation of the target pesticides at trace levels, reducing analysis time and increasing sample throughput in routine analytical laboratories.  相似文献   

14.
A spectroradiometer has been developed for direct measurement of the solar actinic UV flux (scalar intensity) and determination of photolysis frequencies in the atmosphere. The instrument is based on a scanning double monochromator with an entrance optic that exhibits an isotropic angular response over a solid angle of 2pi sr. Actinic flux spectra are measured at a resolution of 1 nm across a range of 280-420 nm, which is relevant for most tropospheric photolysis processes. The photolysis frequencies are derived from the measured radiation spectra by use of published absorption cross sections and quantum yields. The advantage of this technique compared with the traditional chemical actinometry is its versatility. It is possible to determine the photolysis frequency for any photochemical reaction of interest provided that the respective molecular photodissociation parameters are known and the absorption cross section falls within a wavelength range that is accessible by the spectroradiometer. The instrument and the calibration procedures are described in detail, and problems specific to measurement of the actinic radiation are discussed. An error analysis is presented together with a discussion of the spectral requirements of the instrument for accurate measurements of important tropospheric photolysis frequencies (J(O(1))(D), J(NO(2)), J(HCHO)). An example of measurements from previous atmospheric chemistry field campaigns are presented and discussed.  相似文献   

15.
Taatjes CA  Oh DB 《Applied optics》1997,36(24):5817-5821
High-frequency wavelength modulation spectroscopy (WMS) has been applied to the detection of the hydroperoxyl radical (HO2 ) in a laser photolysis and long-path absorption pump-probe kinetics reactor with a near-infrared distributed feedback diode laser. The HO2 is formed by the 355-nm photolysis of Cl2 in the presence of CH3 OH and O2 and monitored by a phase-sensitive detection of the second-harmonic (2f ) signal in the 2?1 band with a 1.5- ?m diode laser directly modulated at 5 MHz. The measured 2f WMS signal is calibrated by direct absorption and converted to an absolute number density with the known absorption line strength of the HO2 line at 6625.80cm-1 . The utility of time-resolved WMS as a second-order kinetics probe is demonstrated through the measurement of the HO2 self-reaction rate constant at 295 K.  相似文献   

16.
Evaluation of the statistical parameters of a Weibull distribution   总被引:3,自引:0,他引:3  
A simple iterative procedure for determination of the statistical parameters of a Weibull distribution is proposed. All experimental results on specimens of different size are considered together as a statistically representative population. The procedure can be used for a population in which each specimen has a unique size. The statistical reliability of the iterative procedure is illustrated by comparison with a minimization analysis and confirmation with existing methods. Experimental confirmation of the analysis is developed using six types of glass and carbon fibres at four gauge lengths each. It is shown that Weibull parameters, obtained separately for populations of fixed length, vary with the fibre length. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

17.
Calibration of laser-saturated fluorescence measurements using Rayleigh scattering is presented as an alternative to absorption. This new procedure is advantageous when measuring radical species at concentrations well below the corresponding detection limit for absorption. The calibration accounts for nonuniform laser irradiation by extracting the local fluorescence emission along the laser axis and works equally well for both saturated and near-saturated center-line conditions. The predicted error due to misfocusing of the collection optics is nearly negligible when the measured fluorescence is within 10% of its peak value. Number densities obtained using this method are within 15% of those obtained from absorption measurements.  相似文献   

18.
ZnO thin film was prepared via evaporation of Zn metal on a glass sheet following by calcination (oxidation) process. The influences of calcination parameters such as temperature and time on the surface morphology and phase structure of ZnO films were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The analysis of XRD patterns indicated that the growth of ZnO nano-structure was controlled by calcination time and temperature. Optimum ZnO nano-fibers can be formed uniformly after 2 h of oxidation at 550 °C. Nanostructured ZnO catalyst exhibited a significantly greater superiority for the photodegradation of 2,4,6-Trichlorophenol (TCP) as a model pollutant in water over photolysis via irradiation with UV of 254 nm wavelength. The role of ZnO catalyst is discussed and the chemical composition of degradation products and intermediates are identified.  相似文献   

19.
Methylcyclopentadienyl manganese tricarbonyl (MMT) is a fuel additive that has been marketed for use in unleaded gasoline since December 1995. The widespread use of this additive has been suggested to cause health risks, but limitations in data regarding its degradation products and their toxicity prevent an accurate evaluation. To monitor the organomanganese compounds, it is clearly advantageous to employ low-cost, high-sensitivity, manganese-specific instrumentation to perform speciation. In this work, instrumentation fitting these criteria was obtained by the combination of high-performance liquid chromatography (HPLC) with diode laser atomic absorption spectrometry (DLAAS) and was used to determine MMT, its nonmethylated derivative, cyclopentadienyl manganese tricarbonyl (CMT), and inorganic manganese. DLAAS was shown to be a versatile analytical technique for total Mn determination, with a detection limit of 1 ng/mL and a linear dynamic range (LDR) of almost 5 orders of magnitude. Analytical figures of merit for HPLC-DLAAS included a detection limit of 2 ng(as Mn)/mL, a LDR of 3 orders of magnitude, and an analysis time of three minutes. The organometallic compounds are characterized by rapid photolysis in sunlight, and hence, experiments were performed to evaluate whether normal laboratory lighting is suitable for their determination. Our results showed that normal laboratory protocols may be employed except that the organomanganese compounds should be stored away from light except during sample introduction procedures. The ability of the instrumentation to selectively preconcentrate organomanganese compounds while removing inorganic manganese was demonstrated. Sufficient resolution was obtained to determine a 20-fold excess of CMT compared with MMT. The ability of the system to do practical analysis was demonstrated by the accurate determination of MMT in spiked samples of gasoline, human urine, and tap water. These results demonstrate the suitability of HPLC-DLAAS for the speciation of MMT and its derivatives in industrial, toxicological, and environmental samples.  相似文献   

20.
In this study, photoacoustic flow measurement methods based on wash-in analysis are presented. These methods use the rod-to-sphere shape transformations of gold nanorods induced by pulsed-laser irradiation. Due to the shape dependence of the optical absorption of the gold nanorods, these shape transitions are associated with a change in the peak optical absorption wavelength. Pulsed-laser irradiation at the wavelength corresponding to the peak optical absorption of the original gold nanorods allows the particles that undergo shape changes to be viewed as "being destructed" by the laser irradiation at that wavelength, hence, flow information can be derived from the change in ultrasound intensity that is directly related to the wash-in rate of the gold nanorods and the laser intensity. Two flow estimation methods based on the wash-in analysis are described. The first method first applies high-energy laser pulses that induce shape changes in all the nanorods. A series of low-energy pulses then are applied to monitor the acoustic signal change as new nanorods flow into the region of interest. The second method uses single-energy laser pulses such that the "destruction" and "detection" are performed simultaneously. The simulation results show that it is valid to fit the time-intensity curves by exponential models. To demonstrate the validity of the proposed methods, an Nd:YAG pulsed laser operating at 1064 nm was used for optical irradiation, and a 1-MHz ultrasonic transducer was used for acoustic detection. Gold nanorods with a peak optical absorption at 1018 nm and a concentration of 0.26 nM were used to estimate flow velocities ranging from 0.35 to 2.83 mm/s. The linear regression results show that the correlation coefficients between the measured velocities and the true values are close to unity (> or = 0.94), thus demonstrating the feasibility of the proposed photoacoustic techniques for relative flow estimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号