首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
This paper reports on a study of on-line monitoring of the buffer capacity of particleboard furnish using near-infrared (NIR) spectroscopy and multivariate analysis models (chemometrics). The buffer capacity of wood furnish is known to affect the quality of polymerization and the curing rates of urea-formaldehyde (UF) resins, which may affect the mechanical properties of manufactured panel. The first phase of the study consisted of building multivariate calibration and validation models from NIR spectroscopy data to predict the buffer capacity of particleboard furnish in a laboratory environment. During this phase, a spectrometer (Ocean Optics USB2000) operating in the 550-1100 nm spectral range was evaluated. The second phase of the study took place at a North American particleboard plant over several weeks. Several multivariate calibration models were constructed and tested on-line during a four-day test period. The on-line root mean square error of prediction (RMSEP) and the coefficient of variation (CV) for buffer capacity predictions ranged from 3.45 to 0.92 and 22.4% to 5.8%, respectively.  相似文献   

2.
A simple device is described to couple a fast-scanning acoustooptic tunable filter-based NIR spectrophotometer to a distillation apparatus for monitoring the condensed vapor in real time. The device consists of a small funnel whose glass neck (2-mm diameter) is bent into an "U" format to produce a flow cell of approximately 150-microL inner volume. A pair of optical fibers is used to deliver the monochromatic light and to collect the fraction passing through the glass tube. The end of the condenser of the distillation head touches the wall of the small funnel. The condensed liquid flows uncoupled from pressure changes in the interior of the distillation head. Absorbance spectra were obtained, during the distillation, as averages of 50 scans (4 s) every 5 s in the spectral range 950-1800 nm with nominal resolution of 2.0 nm. In the first experiments, the distillations were performed at constant power supplied to the sample (25 mL) in a microdistillation apparatus working without any type of reflux column. The usefulness of the real-time monitoring of distillation is demonstrated using some prepared binary mixtures and by comparing the distillation behavior of adulterated and regular gasoline samples. Data analysis and interpretation are facilitated by employing principal component analysis. The system accesses the composition of the condensate, which can separate and concentrate one or more compounds present in the original sample.  相似文献   

3.
A new method for on-line monitoring of fermentations using mid-infrared (MIR) spectroscopy has been developed. The method has been used to predict the concentrations of glucose and ethanol during a baker's yeast fermentations. A completely automated flow system was employed as an interface between the bioprocess under study and the Fourier transform infrared (FT-IR) spectrometer, which was equipped with a flow cell housing a diamond attenuated total reflection (ATR) element. By using the automated flow system, experimental problems related to adherence of CO(2) bubbles to the ATR surface, as well as formation of biofilms on the ATR surface, could be efficiently eliminated. Gas bubbles were removed during sampling, and by using rinsing steps any biofilm could be removed from the ATR surface. In this way, constant measuring conditions could be guaranteed throughout prolonged fermentation times (approximately 8 h). As a reference method, high-performance liquid chromatography (HPLC) with refractive index detection was used. The recorded data from different fermentations were modeled by partial least-squares (PLS) regression comparing two different strategies for the calibration. On the one hand, calibration sets were constructed from spectra recorded from either synthetic standards or from samples drawn during fermentation. On the other hand, spectra from fermentation samples and synthetic standards were combined to form a calibration set. Differences in the kinetics of the studied fermentation processes used for calibration and prediction, as well as the precision of the HPLC reference method, were identified as the main chemometric sources of error. The optimal PLS regression method was obtained using the mixed calibration set of samples from fermentations and synthetic standards. The root mean square errors of prediction in this case were 0.267 and 0.336 g/L for glucose and ethanol concentration, respectively.  相似文献   

4.
This paper reports on-line monitoring of the density of linear low-density polyethylene (LLDPE) by near-infrared (NIR) spectroscopy and chemometrics. The on-line monitoring was carried out not only in a laboratory but also in a real plant. We composed an on-line monitoring system for molten polymers consisting of a Fourier transform near-infrared (FT-NIR) spectrometer, input/output (I/O) module, a personal computer, and a sampling cell that we developed. We first compared NIR spectra of LLDPE in the solid and melt states and then developed calibration models that predict the density using partial least squares regression (PLS). The sample sets for developing prediction models were collected for three months at the plant, and the density of LLDPE was continuously monitored on-line for another three months using the model. The standard error of prediction (SEP) for the on-line monitoring of the density of LLDPE at the plant was +/-2.1 mg/cm(3) (range: 0.91-0.95 g/cm(3)).  相似文献   

5.
Xia M  Yang S  Simpkins JW  Liu H 《Applied optics》2007,46(34):8315-8321
The aim of this study was to assess hemodynamic changes by near-infrared spectroscopy (NIRS) during acute focal cerebral ischemia and reperfusion. The study also has evaluated the therapeutic effects of estrogen against vascular dysfunction. Focal cerebral ischemia was induced in nine bilaterally ovariectomized rats, using an endovascular occlusion technique of the middle cerebral artery (MCA). Four out of nine rats had estrogen pretreatment before MCA occlusion (MCAO). The other five rats had MCAO with no pretreatment. The occlusion time was 60 min, followed by 40-60 min of reperfusion. Real-time monitoring of changes in hemoglobin concentrations was performed by a steady-state, two-channel, NIRS system through the period of occlusion and reperfusion. Both changes in total and oxygenated hemoglobin concentrations (D[HbT] and D[HbO(2)]) display apparent periodic fluctuations during occlusion for the rats without estrogen pretreatment, while no rhythmic fluctuation was observed in the rats with the pretreatment. This rhythmic fluctuation is a microvascular dysfunction. Fourier power spectral analysis was performed on the D[HbO(2)] profiles in both rat groups. The results show that the cumulative frequency power of D[HbO(2)] in the range of 0.0025-0.01 Hz for the rats without pretreatment is significantly higher than that with pretreatment. The study implies that the dysfunctional fluctuations disappear in the rats with estrogen pretreatment, demonstrating a new application of NIRS, i.e., to detect focal cerebral ischemia and to monitor cerebral responses to therapy against vascular dysfunction in animal models.  相似文献   

6.
近红外光谱法测定茶多酚中总儿茶素含量   总被引:21,自引:7,他引:21  
以高效液相色谱(HPLC)分析结果为参考值,建立了快速测量茶多酚中总儿茶素含量的近红外光谱定标模型.将48份茶多酚样品组成定标样品集,在1000~2500nm(4000~10000cm-1)的近红外漫反射光谱为定标波长范围内,光谱经一阶导数(Firstderivative)、二阶导数(Secondderivative)、标准归一化(Stan-dardnormalvariate,SNV)和多元散射校正(multiplicativesignalcorrection,MSC)处理后结合偏最小二乘回归(PLS)定标.经内部交叉验证表明,光谱经SNV处理后建模结果最佳.模型的相关系数Corr.Coeff=0.997,校正均方根RMSEC=1.71%.比较了经典最小二乘法(CLS)、偏最小二乘法(PLS)和主成分回归(PCR)等方法建模结果,以偏最小二乘回归建模效果最好.  相似文献   

7.
"Stickiness" in cotton is a major problem affecting throughput in cotton gins and spinning mills alike. Stickiness is thought to be caused by the deposition of sugars by insects, principally aphid and whitefly, on the open boll. Fourier transform near-infrared (FT-NIR) spectroscopy was used to develop models for sugar content from high-pressure liquid chromatography (HPLC), thermodetector, and mini-card data. A total of 457 cotton samples were selected to represent both Upland and Pima varieties and cotton processing before and after ginning. The Unscrambler was used to develop the models. A successful model was made to determine the mini-card value and successfully detect "stickiness". The standard error of cross-validation (SECv) was 0.26 with an R2 of 0.96. The model was not improved by increasing the range of "stickiness" as measured by the mini-card from the usual 0-3 scale to a scale of 0-8. If a value is determined to be greater than 1 it will be difficult to blend bales at a spinning plant "opening line" to allow for maximum efficiency of spinning.  相似文献   

8.
Multicomponent blood analysis by near-infrared Raman spectroscopy   总被引:5,自引:0,他引:5  
Berger AJ  Koo TW  Itzkan I  Horowitz G  Feld MS 《Applied optics》1999,38(13):2916-2926
We demonstrate the use of Raman spectroscopy to measure the concentration of many important constituents (analytes) in serum and whole blood samples at physiological concentration in vitro across a multipatient data set. A near-infrared (830-nm) diode laser generates Raman spectra that contain superpositions of Raman signals from different analytes. Calibrations for glucose, cholesterol, urea, and other analytes are developed by use of partial least-squares cross validation. We predict six analytes in serum with significant accuracy in a 66-patient data set, using 60-s spectra. The calibrations are shown to be fairly robust against system drift over the span of seven weeks. In whole blood, a preliminary analysis yields accurate predictions of some of the same analytes and also hematocrit. The results hold promise for potential medical applications.  相似文献   

9.
Short-wavelength near-infrared (SW-near-IR) spectroscopy (700-1100 nm) is used for the determination of ethanol during the time course of a fermentation. Measurements are performed noninvasively by means of a photodiode array spectrometer equipped with a fiber-optic probe placed on the outside of the glass-wall fermentation vessel. Pure ethanol/water and ethanol/yeast/water mixtures are studied to establish the spectral features that characterize ethanol and to show that determination of ethanol is independent of the yeast concentration. Analysis of the second-derivative data is accomplished with multilinear regression (MLR). The standard error of prediction (SEP) of ethanol in ethanol/water solutions is approximately 0.2% over a range of 0-15%; the SEP of ethanol in ethanol/yeast/water solutions is 0.27% (w/w). Results from the mixture experiments are then applied to actual yeast fermentations of glucose to ethanol. By use of a gas chromatographic method for validation, a good correlation is found between the intensity of backscattered light at 905 nm and the actual ethanol. Additional experiments show that a calibration model created for one fermentation can be used to predict ethanol production during the time course of others with a prediction error of 0.4%.  相似文献   

10.
The first use of near-infrared (NIR) Fourier transform vibrational circular dichroism (FT-VCD) to follow changes in the enantiomeric excess (EE) of chiral sample molecules in time using a flow-cell sampling apparatus is reported. Simultaneous changes in the fractional composition and the EE of a mixture of two different chiral molecules were monitored as a function of time. This simulates the progress of the chemical reaction from a chiral reactant to a chiral product where the mole fractions and EE values of both species may change with time. For the molecules studied, alpha-pinene, camphor, and borneol, the accuracy of following EE changes for one species alone is approximately 2%, while for simultaneously following EE changes in two species it is approximately 3% for 30 min sampling periods at 16 cm(-1) spectral resolution. These findings demonstrate the potential for VCD to be used in the NIR region for real-time monitoring of the composition and %EE of chemical reactions involving the synthesis of chiral molecules.  相似文献   

11.
In this work, it is demonstrated that the coating weight of printed layers can be determined in-line in a running printing press by near-infrared (NIR) reflection spectroscopy assisted by chemometric methods. Three different unpigmented lacquer systems, i.e., a conventional oil-based printing lacquer, an ultraviolet (UV)-curable formulation, and a water-based dispersion varnish, were printed on paper with coating weights between about 0.5 and 7 g m(-2). NIR spectra for calibration were recorded with a special metal reflector simulating the mounting conditions of the probe head at the printing press. Calibration models were developed on the basis of the partial least squares (PLS) algorithm and evaluated by independent test samples. The prediction performance of the developed models was examined at a sheet-fed offset printing press at line speeds between 90 and 180 m min(-1). Results show an excellent correlation of data predicted in-line from the NIR spectra with reference values obtained off-line by gravimetry. The prediction errors were found to be ≤ 0.2 g m(-2), which confirms the suitability of the developed spectroscopic method for process control in technical printing processes.  相似文献   

12.
Genetically improved soybean grain often contains altered fatty acid profiles. Such alterations can have deleterious effects on seed germination and seedling development, making it necessary to monitor fatty acid profiles in follow-up physiological studies. The objective of this research was to quantify the five fatty acids in soybean (Glycine max) cotyledons using near-infrared (NIR) spectroscopy. Soybean cotyledon samples were dried, ground, and scanned with visible and NIR radiation from 400 to 2500 nm, and reflectance was recorded. Samples were also analyzed by gas chromatography (GC) for palmitic, stearic, oleic, linoleic, and linolenic acids and total oil; GC data, expressed as actual concentration and proportion of total oil, were regressed against spectral data to develop calibration equations. Equation statistics indicated that four of the five fatty acids could be predicted accurately by NIR spectroscopy; the fifth fatty acid could be determined by subtraction. Principal component analysis revealed that most of the spectral variation in this population was due to chlorophyll absorbance in the visible region. Therefore, the spectra were trimmed to include the NIR region only (1100-2500 nm), and a second set of equations was developed. Equations based exclusively on NIR spectra had equal or greater precision than equations based on visible and NIR spectra. Principal component analysis and partial least squares analysis revealed that even after trimming, at least 90% of the spectral variation was unrelated to fatty acid, though variation from fatty acid was identified in the second and third principal components. This research provides an NIR method for complete fatty acid profiling of soybean cotyledons. Equations were achieved with NIR spectra only, so spectrophotometers that analyze both the visible and NIR regions are not needed for this analysis. In addition, equations were possible with a 250 mg sample, which is one-tenth the normal sample size for this analysis.  相似文献   

13.
14.
用近红外光谱技术对无碱布/酚醛预浸料的树脂含量、可溶树脂含量和挥发分含量进行在线检测,通过偏最小二乘方法分别建立标准模型,选择光谱预处理方法和PLS的因子数.用近红外方法和标准方法对未知样品进行分析,通过t检验结果显示两种方法没有显著性的差别,利用该方法可以同时预测三项指标,1分钟之内就可以分析一个样品,没有破坏性.如果质量指标不合格,通过自动控制系统发出指令,及时调节工艺参数.研究表明近红外光谱方法能够十分有效和准确对分析预浸料质量.  相似文献   

15.
Ikehata A  Itoh T  Ozaki Y 《Analytical chemistry》2004,76(21):6461-6469
Near-infrared (NIR) spectroscopy is ill-suited to microanalysis because of its low absorptivity. We have developed a highly sensitive detection method for NIR spectroscopy based on absorption-sensitive surface plasmon resonance (SPR). The newly named SPR-NIR spectroscopy, which may open the way for NIR spectroscopy in microanalysis and surface science, is realized by an attachment of the Kretschmann configuration equipped with a mechanism for fine angular adjustment of incident light. The angular sweep of incident light enables us to make a tuning of a SPR peak for an absorption band of sample medium. From the dependences of wavelength, incident angle, and thickness of a gold film on the intensity of the SPR peak, it has been found that the absorbance can be enhanced by approximately 100 times compared with the absorbance obtained without the gold film under optimum conditions. This article reports the details of the experimental setup and the characteristics of absorption-sensitive SPR in the NIR region, together with some experimental results obtained by using it.  相似文献   

16.
High-resolution diode laser spectroscopy in the near-infrared region is applied to the accurate measurement of soil respiration. In particular, the use of a diode-laser-based spectrometer has allowed the implementation, for the first time, of a static accumulation method capable of measuring soil respiration from continuous measurements of CO(2) concentrations, with minor perturbation on soil respiration as well as on CO(2) transport and emission. The system has been tested in a laboratory experiment by detection of CO(2) production from sandy matrices, inoculated with active soil microbes and supplied with different amounts of decomposable plant material. Respiration rates of all samples were then retrieved using a diffusion model. The results of the laboratory tests are in agreement with those expected on the basis of sample composition. Examples of operation with real soil samples are also reported. We discuss the possible field application of the system, in conjunction with closed static soil chambers.  相似文献   

17.
The measurement of dynamic changes in the blood oxygenation of tumor vasculature could be valuable for tumor prognosis and optimizing tumor treatment plans. In this study we employed near-infrared spectroscopy (NIRS) to measure changes in the total hemoglobin concentration together with the degree of hemoglobin oxygenation in the vascular bed of breast and prostate tumors implanted in rats. Measurements were made while inhaled gas was alternated between 33% oxygen and carbogen (95% O(2), 5% CO(2)). Significant dynamic changes in tumor oxygenation were observed to accompany respiratory challenge, and these changes could be modeled with two exponential components, yielding two time constants. Following the Fick principle, we derived a simplified model to relate the time constants to tumor blood-perfusion rates. This study demonstrates that the NIRS technology can provide an efficient, real-time, noninvasive means of monitoring the vascular oxygenation dynamics of tumors and facilitate investigations of tumor vascular perfusion. This may have prognostic value and promises insight into tumor vascular development.  相似文献   

18.
Fast and accurate monitoring of monomer concentration during copolymerization reactions is of much interest. It is known that near-infrared spectroscopy (NIRS) can be used to monitor polymerization reactions. Here, a free radical solution copolymerization reaction between methyl methacrylate and N,N-dimethylacrylamide is considered. NIR spectra were measured in-line with a transflectance probe. The spectra of both involved monomers are very similar, making monitoring with NIRS challenging. It is shown that the NIRS calibration can be set up with only a few (5) off-line measured mixtures. Several validation methods for such a NIRS calibration model are discussed and tested. NIRS is used to follow conversion of the two monomers in a copolymerization reaction on-line.  相似文献   

19.
This paper reports in situ noninvasive blood glucose monitoring by use of near-infrared (NIR) diffuse-reflectance spectroscopy. The NIR spectra of the human forearm were measured in vivo by using a pair of source and detector optical fibers separated by a distance of 0.65 mm on the skin surface. This optical geometry enables the selective measurement of dermis tissue spectra due to the skin's optical properties and reduces the interference noise arising from the stratum corneum. Oral glucose intake experiments were performed with six subjects (including a single subject with type I diabetes) whose NIR skin spectra were measured at the forearm. Partial least-squares regression (PLSR) analysis was carried out and calibration equations were obtained with each subject individually. Without exception among the six subjects, the regression coefficient vectors of their calibration models were similar to each other and had a positive peak at around 1600 nm, corresponding to the characteristic absorption peak of glucose. This result indicates that there is every possibility of glucose detection in skin tissue using our measurement system. We also found that there was a good correlation between the optically predicted values and the directly measured values of blood samples with individual subjects. The potential of noninvasive blood glucose monitoring using our methodology was demonstrated by the present study.  相似文献   

20.
The efficiency of a powder coating technique has been quantitatively evaluated through a comparison of the densification behaviour, green compact and dense material microstructural homogeneity in terms of a homogeneity dimension, and mechanical properties, using coated powders and mixed powders in the case of Si3N4 powder densified by hot-pressing with the liquid-forming additive system Al2O3-TiO2-SiO2. For coated powder, a significantly smaller value of the homogeneity dimension was obtained. The oxide phases became re-distributed during densification, with the aluminium-containing phase distributed on a finer scale, and the titanium-containing phase on a coarser scale, compared with the green body. Materials prepared by hot-pressing of coated powders showed a more homogeneous microstructure, higher bend strength and higher Weibull modulus, compared with materials prepared from mixed powders. There were no differences in fracture toughness and hardness between the two types of material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号