首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
王峰  刘正  冷爱民 《铸造技术》2006,27(11):1200-1204
利用OM,SEM,XRD及力学性能测试等手段,研究了添加Ca元素的AZ91 XCa(X=0,0.5,1.0,1.5,wt%)合金挤压管材的显微组织及室温和高温力学性能。结果表明,Ca元素可以明显细化合金组织,使Mg17Al12相的形貌及分布发生改变;合金中加入少量Ca时,Ca主要溶入Mg17Al12相中,随着合金中Ca含量的增加,一部分Ca溶入Mg17Al12相,另一部分与Al化合形成Al2Ca相。Ca的加入提高了合金的高温强度和伸长率,但降低了合金的室温强度。少量的Ca有助于提高合金的高温力学性能,挤压AZ91 0.5Ca合金200℃时的力学性能可以达到σb=218.0MPa,σs=182.0MPa和δ5=24.0%,比挤压AZ91合金分别提高了27.0%,66.2%和16.5%。  相似文献   

2.
镁合金经Ca合金化处理和稀土Nd变质处理后,在100MPa压力下挤压铸造成形,研究了Nd对Mg-8Al-1.0Ca合金组织和性能的影响。经XRD扫描及EDS能谱分析发现,通过挤压铸造,使得镁合金晶粒细化,有利于位错形成,析出相变得均匀细小,力学性能明显改善;当Nd添加量为0.4%时,镁抗拉强度达到230MPa,屈服强度为121MPa,伸长率为4.8%,合金性能达到最佳,较未变质时分别提高了28%、61%和78%。  相似文献   

3.
通过显微组织观察,力学性能测试,研究了ZM21镁合金在400℃时不同挤压比和挤压速度对显微缉织和性能的影响.并优化了挤压参数。结果表明:当挤压速率为0.1m/s时,优化的挤压比为70.9;当挤压比为121.3时最佳的挤压速率为0.3m/s;用屈服强度和晶粒尺寸之间的关系计算出了该合金的hall-patch公式系数,得到E为393.4MPa·μm^1/2。  相似文献   

4.
对建筑用Mg-8Sn-1Mn高强镁合金进行了挤压试验,并进行了不同挤压温度下镁合金的显微组织和力学性能的测试与分析.结果 表明:随着挤压温度的升高,Mg-8Sn-1Mn高强镁合金试样的抗拉强度和屈服强度先增大后减小,断后伸长率和平均晶粒尺寸先减小后增大.与300℃挤压相比,390℃挤压温度下试样的抗拉强度、屈服强度增大...  相似文献   

5.
挤压工艺对AZ31镁合金组织和性能的影响   总被引:2,自引:0,他引:2  
研究了挤压温度和挤压速率对AZ31镁合金显微组织、耐腐蚀性能和力学性能的影响。结果表明,通过300℃下的热挤压变形,AZ31合金发生动态再结晶,合金组织比铸态时细化,耐腐蚀性能和力学性能明显提高;AZ31镁合金挤压后的组织及力学性能受挤压温度及挤压速率的影响,在本试验范围内,AZ31镁合金经过挤压温度为300℃、挤压速率为6.0 mm/s的挤压变形后得到的组织均匀细小,耐腐蚀性能和力学性能良好。  相似文献   

6.
AZ31B镁合金挤压工艺研究   总被引:16,自引:0,他引:16  
《金属成形工艺》2002,20(5):11-14
  相似文献   

7.
利用光学显微镜和扫描电镜对AZ31镁合金挤压板再结晶退火前后的显微组织和断口形貌进行分析,并通过室温拉伸试验研究了再结晶退火前后的力学性能.结果表明,随退火保温时间的延长,板材先出现大量片状退火孪晶,随后退火孪晶消失,变形组织被细小、均匀的再结晶晶粒所取代;再结晶退火后,挤压板伸长率增加,抗拉强度提高;退火后试样断裂时宏观断口呈现撕裂棱与韧窝共存的形貌,呈韧性断裂,且随着合金晶粒尺寸减小,撕裂棱和韧窝更加细小.  相似文献   

8.
采用二次挤压工艺制备MB26(Mg-6.3Zn-0.7Zr-0.9Y-0.3Nd)镁合金棒材,研究不同挤压比对MB26合金组织性能的影响,通过金相(OM)、X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)等手段分析稀土元素在合金中的分布及其对微观组织的影响。结果表明:合金在二次挤压过程中发生动态再结晶,随着挤压比的增加,再结晶晶粒细化,当挤压比λ=25时,平均晶粒尺寸为1.9μm,合金力学性能达到最优;合金经挤压变形后出现大量W(Mg3Y2Zn3)相和β′(MgZn)相,均呈弥散分布,钉扎晶界,阻碍了动态再结晶晶粒的长大。通过数据拟合得到该合金屈服强度与晶粒尺寸的Hall-Petch关系。  相似文献   

9.
AZ91镁合金挤压组织与性能的试验研究   总被引:1,自引:0,他引:1  
通过对AZ91镁合金不同条件下的热挤压成形试验,结果发现,均匀化退火可提高材料塑性,使伸长率由1.8%提高至5%.相对于平模、锥模而言,流线型挤压模具可改善材料的流动性,制备出光滑完整的AZ91棒材.挤压后合金棒材的强度和塑性同时提高,抗拉强度可达340 N/mm2,屈服强度超过260 N/mm2,伸长率超过12%.SEM扫描电镜分析显示,合金中的第二相为晶界上粗大的Mg17Al12和晶粒内部弥散分布的AlxMny.挤压后Mg17Al12可被碎化,α基体晶粒平均直径细化至20 μm,而AlxMny则和铸态的相同,平均直径5 μm.  相似文献   

10.
通过对实验结果进行分析,来探究热处理工艺对挤压态Mg-4.8Zn-1.2Y-0.4Zr镁合金的组织性能的影响规律。研究表明在热处理过程中,挤压态镁合金中的组织发生了明显的变化,T4固溶处理后,虽然合金的晶粒明显长大,但是合金的塑性仍然有显著提升,这主要是因为W相由粗大的鱼骨状分解为细小的颗粒状降低了晶界的阻塞作用;T5热处理后合金中除W相外,还有少量的Mg-Zn相析出,提高了合金的性能。T6热处理后合金中W相几乎全部分解,析出了Mg-Zn和Mg-Y等新相,这些弥散分布的相大大提高了合金的强度和塑性。T6热处理后合金的极限抗拉强度和延伸率分别从挤压态的311MPa、16.89%提高到374MPa、21.97%。最终得到最适合Mg-4.8Zn-1.2Y-0.4Zr合金的热处理方式(500℃× 2h 200℃×48h)。  相似文献   

11.
通过光学显微镜(OM)、差热分析(DTA)、X射线衍射分析(XRD)、扫描电镜(SEM)及拉伸试验等方法,研究了均匀化处理对Mg-2.3Nd-0.5Zn-0.5Zr合金组织及力学性能的影响。结果表明:铸态合金主要由α-Mg、条状Mg12Nd相及花瓣状Zn-Zr相组成。经均匀化处理后,条状Mg12Nd相逐渐溶入基体,晶内还存有部分花瓣状Zn-Zr相,合金最佳的均匀化处理工艺为505 ℃×6 h。经最佳均匀化处理后,晶界第二相溶入基体消除了裂纹源,伸长率提高了100%,合金断裂模式由铸态的脆性解理断裂转变为延性穿晶断裂,但第二相强化及细晶强化效果的弱化抵消了固溶强化作用,合金的抗拉强度、屈服强度略有提高。  相似文献   

12.
挤压比对Al-Cu-Mg-Ag-Er合金线材组织及性能影响   总被引:1,自引:0,他引:1  
通过热挤压工艺制备了不同挤压比的Al-Cu-Mg-Ag-Er线材,采用光学显微镜(OM)、扫描电镜(SEM)、差示扫描量热分析(DSC)和拉伸性能以及电阻率测试等方法研究了不同挤压比对合金线材显微组织、力学性能和导电性能的影响。结果表明,随挤压比增大,晶粒尺寸减小;同时,合金挤压过程中,合金中原骨骼状的Al2Cu相和Al8Cu4Er相破碎,分别呈块状和颗粒状。在较高的挤压比(λ=50~100)下,块状的Al2Cu相部分溶解,Al8Cu4Er相仍稳定存在。随挤压比增大,合金的抗拉强度和伸长率提高,电阻率增大;挤压合金的力学性能和电阻率受到晶粒细化,析出相粒子熔化和材料加工硬化的综合影响。  相似文献   

13.
稀土对6061铝合金组织和挤压性能的影响   总被引:2,自引:0,他引:2  
向6061铝合金中添加的混合稀土,采用金相显微镜和扫描电镜,在6 MN热挤压机上研究稀土元素对6061铝合金铸态组织和热挤压性能的影响。结果表明,添加稀土后,铝合金的晶粒得到细化,晶界有少量稀土相析出。挤压时挤压力降低,挤压时间缩短。同时合金能够保持很好的力学性能。适量稀土可改善6061铝合金的挤压工艺性能,对制品力学性能影响不大。  相似文献   

14.
研究了挤压工艺参数(挤压温度、挤压比)对Mg-Sr-Y中间合金组织和性能的影响。结果表明:Mg-Sr-Y中间合金的铸态组织是由树枝晶状的基体相α-Mg、沿晶分布的网状共晶组织(Mg17Sr2+Mg25Y4)组成;热挤压后合金的晶粒明显细化,树枝晶和网状组织被打碎,晶粒大小和合金中析出相的分布更均匀。同时挤压后合金的硬度显著提高,力学性能明显改善,形变强化效果较为显著,其强化效果与挤压温度和挤压比有关。挤压温度越高,挤压比越大,则强化效果越显著。  相似文献   

15.
采用扫描电子显微镜(SEM)、能谱分析(EDS)、X射线衍射(XRD)研究了固溶处理对Mg-2Nd-0.5Zn-0.4Zr和Mg-2Nd-0.5Zn-0.4Zr-3Y两种镁合金显微组织的影响,通过析氢、质量损失测试及电化学方法研究其在模拟体液(SBF)中的生物腐蚀性能;并对比分析了稀土Y的添加对镁合金组织及腐蚀性能的影响。结果表明:经过固溶处理后,合金的大部分析出相溶于基体,其在SBF中腐蚀速率仅为铸态合金的44.35%和46.67%;添加稀土Y使合金中析出相增多,出现新的块状析出相Mg24Y5,合金的耐生物腐蚀性能得到提高。  相似文献   

16.
Mg-3.4Nd-0.1 Zn-0.40Zr alloy samples with and without containing gadolinium(0.6%,mass fraction)were prepared by sand casting.The aged hardening behavior,solidification microstructures and mechanical properties of the alloys were investigated by using the analysis methods of OM,XRD,TEM,hardness tests and mechanical property tests.The main research results are as follows.1)Compared with the alloy without the addition of gadolinium.the alloys with the addition of gadolinium shows the more remarkable age-hardening response.2) The as-cast microstructure of the alloy with and without containing gadolinium consists of α-Mg grains with Mg12Nd phase on the grain boundary.After solution heat-treatment,Mg12Nd phase of the alloy without containing gadolinium is dissolved in the matrix,however,there iS still discontinued Mg12Nd phase at grain boundary of the alloy with containing gadolinium.The more finely dispersed precipitates in Mg matrix are formed in the alloy with containing gadolinium during age-treatment.3)The room temperature and high temperature mechanical properties ofthe alloy are satisfactory.with σb=280 MPa,σ0.2=165 MPa at RT and aσb=215 MPa,σ0.2=155 MPa at 250℃.The high temperature mechanical properties decrease slightly with the increase of temperature.  相似文献   

17.
通过拉伸试验、浸泡实验、电化学测试、扫描电镜(SEM)以及光学显微镜(OM)等方法研究了Dy含量对Mg-2Zn-0.5Zr-xDy生物镁合金微观组织、耐腐蚀性能和力学性能的影响。结果表明:随Dy含量的增加,合金的晶粒尺寸逐渐变小,第二相逐渐增多且主要沿晶界分布,合金的平均腐蚀速率先降低后升高,合金的力学性能先升高后降低;当Dy含量为1.5 mass%时,合金的耐蚀性能和综合力学性能均最好,平均腐蚀速率从未添加稀土元素时的1.28 mm/a降为0.92 mm/a,抗拉强度和伸长率分别为154 MPa和8.6%。  相似文献   

18.
挤压变形对镁合金组织与力学性能的影响   总被引:1,自引:1,他引:1  
研究了镁合金管材挤压成形工艺参数,如坯料温度、模具温度、润滑、挤压比、挤压速度等对镁合金管材挤压后组织与力学性能的影响,以及镁合金管材挤压成形后高温性能、室温性能和超塑性性能。结果表明:镁合金挤压管材的室温力学性能为屈服极限190 MPa,拉伸强度280 MPa,伸长率17%;镁合金挤压管材在400℃高温时的力学性能为屈服极限、拉伸强度值接近25MPa,伸长率180%;随着变形程度的增大,力学性能指标随之增大,并分析了镁合金管材挤压后组织状态的变化。  相似文献   

19.
将挤压态Mg-4Gd合金沿挤压方向进行10%预拉伸处理,然后研究了时效处理对预变形后合金组织和力学性能的影响。结果表明:预拉伸处理产生加工硬化的同时促进了变形镁合金中灰暗过渡相及明亮平衡相的形核,时效过程加速了过渡相的形成及其向平衡相的转化。随着时效温度升高,明亮平衡相的平均尺寸增加。预拉伸试样经时效处理可提高力学性能,当时效工艺为210℃×24 h时,合金综合力学性能最佳,其硬度、屈服强度、抗拉强度和伸长率分别为66.65 HV0.1、137.4 MPa、245.4 MPa和22.1%;时效温度升高使得合金的峰值硬度降低,但达到硬度峰值所需时间缩短且强度和伸长率均保持在较高水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号