首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
采用4种典型的WC系硬质合金粉末与W-Ni复合粉末,研究了粉末结构、粘结相的成分与含量,以及超音速火焰喷涂(HVOF)条件对涂层结合强度的影响。结果表明:对于具有高熔点的WC及W颗粒构成的复合粉末,HVOF涂层的结合强度大于结胶的强度,几乎不受粉末结构和粘结相成分的影响。试验表明:喷涂料子具备液固两个相结构是HVOF涂层获得高结合强度的必要条件,而WC与W的高密度是保证HVOF涂层高结合强度的充分  相似文献   

2.
宁建华 《热加工工艺》2014,(14):163-166
采用不同的工艺参数进行了H13钢模具的Cr-25%Sr-0.5%RE复合粉末冷喷涂实验,并进行了涂层厚度、降低涂层孔隙率、提高涂层的结合强度和耐磨损性能的测试与对比分析。结果表明,随载气温度从350℃升高至550℃、喷涂距离从15mm增加至30mm,模具涂层的初始摩擦系数保持0.1左右、平稳时摩擦系数先减小后增大、摩擦寿命先延长后缩短、涂层厚度先增大后减小,涂层孔隙率先减小后增大;其优选的载气温度为450℃、喷涂距离为25mm。  相似文献   

3.
采用WC/Fe/Al混合粉末,通过机械合金化制备40v0l% WC/Fe(Al)固溶体复合粉末,利用冷喷涂沉积涂层并结合热处理原位反应制备了WC/FeAl金属间化合物基金属陶瓷涂层.研究了球磨时间对复合粉末相结构、晶粒尺寸及组织结构的影响,并分析了冷喷涂WC/FeAl金属间化合物基金属陶瓷涂层的组织和显微硬度.结果表明,机械合金化可获得WC陶瓷颗粒呈微/纳米多尺度分布的WC/Fe(Al)金属陶瓷复合粉末,球磨36 h的复合粉末基体相平均晶粒尺寸约为90 nm,冷喷复合涂层组织致密、多尺度WC颗粒在基体中均匀弥散分布,涂层显微硬度约为1060 HV0.3,涂层在650℃热处理后发生Fe(Al)固溶体向FeAl金属间化合物的原位转变,制备出了WC/FeAl金属间化合物基金属陶瓷涂层.  相似文献   

4.
王维 《腐蚀与防护》2011,(6):480-482,493
用一种进口水基含铝高温防腐蚀涂料制备了金属陶瓷涂层,介绍了制备的工艺,对该涂层的性能进行了研究.结果表明,按照一定的喷涂压力和喷涂距离进行喷涂,可获得表面均匀、结合良好的涂层.喷涂一层IPcote9183可以获得厚度为0.01 mm~0.02 mm的涂层;可进行多层喷涂.厚度为0.02~0.03mm的涂层,中性盐雾试验...  相似文献   

5.
采用超音速火焰喷涂技术和等离子喷涂技术在活塞杆用316L不锈钢基体上制备了WC-12Co (WC)/NiCr双重涂层,并制备传统等离子喷涂Al2O3-13TiO2(AT13)涂层作为对照。通过扫描电镜、X射线衍射仪、显微维氏硬度计、摩擦磨损试验机、电化学工作站等设备对涂层的性能进行了研究和对比。结果表明,各涂层界面界限清晰,结合性良好,WC涂层的显微硬度为1363 HV0.3,是AT13涂层的1.8倍。在60 min往复摩擦磨损试验条件下,AT13涂层的体积磨损率为WC涂层的4.42倍,WC涂层磨损机制主要表现为磨粒磨损。在3.5%NaCl溶液中,WC涂层和AT13涂层的自腐蚀电位均低于316L不锈钢基体,避免了电偶效应对基体的优先腐蚀,并且AT13涂层的自腐蚀电流密度最大,其次是316L不锈钢基体,WC涂层的自腐蚀电流密度最小,仅为基体的0.57倍。  相似文献   

6.
王金寅 《表面技术》2000,29(3):11-12
采用高速火焰(HVAF)喷涂工艺制备金属碳化物陶瓷涂层,使拉丝轮圈的耐磨性能大幅度提高。介绍了涂层工艺和产品标准,并研讨有关问题。  相似文献   

7.
采用冷喷涂法制备Al涂层,测定所获涂层的沉积率、显微硬度,并分析涂层与基体的结合情况,研究了喷涂距离对Al涂层的影响。结果表明,喷涂距离为30 mm时涂层的沉积率及显微硬度较高,与基体结合效果较好,而其他距离下涂层性能劣化的原因为颗粒下降速度不稳或发生粒子散射。  相似文献   

8.
以钛铁粉、羰基镍粉和碳的前驱体(蔗糖)为原料,通过前驱体碳化复合技术制备Ti-Fe-Ni-C系反应热喷涂粉末,并通过爆炸喷涂技术原位合成并沉积TiC/Fe-Ni金属陶瓷复合涂层;利用XRD、SEM和EDS研究喷涂复合粉末和涂层的相组成、显微结构.结果表明:采用前驱体碳化复合技术制备的Ti-Fe-Ni-C反应喷涂复合粉末粒度均匀;所制备的TiC/Fe-Ni复合涂层由不同含量TiC颗粒分布于金属基体内部而形成的复合片层叠加而成,基体主要是(Fe,Ni)固溶体;TiC颗粒大致呈球形,粒度为纳米级;复合涂层的平均显微硬度HV0.2为18.9 GPa.  相似文献   

9.
粉末结构对HVOF金属陶瓷涂层腐蚀冲蚀磨损性能的影响   总被引:1,自引:0,他引:1  
采用3种不同NiCr粘结相含量和两种不同尺度WC颗粒的金属陶瓷粉末,运用超音速火焰喷涂(HVOF)方法制备了Cr3 C2-NiCr、WC-12%Co涂层,在5%H2 SO4、15%棕刚玉和水混合介质条件下,运用腐蚀冲蚀磨损试验机测定了涂层在45°冲蚀角下的失重量变化规律,研究了喷涂粉末NiCr含量和WC颗粒尺度对所沉积金属陶瓷涂层耐腐蚀冲蚀磨损性能的影响。结果表明,HVOF喷涂Cr3C2-NiCr、WC-12%Co涂层在5%H2SO4、15%棕刚玉和水混合介质条件下的腐蚀冲蚀率均低于低碳钢,并且Cr3 C2-NiCr涂层的抗腐蚀冲蚀性能要优于WC-12%Co涂层。Cr3 C2-40%NiCr和Cr3 C2-25%NiCr涂层其腐蚀冲蚀率低于Cr3 C2-10%NiCr涂层,与纳米尺度WC颗粒相比,微米尺度WC颗粒所制备的WC-12%Co涂层的抗腐蚀冲蚀性能较好。  相似文献   

10.
通过等离子喷涂方法在45钢基体上制备添加不同含量稀土氧化物CeO_2的Ti-Al/WC金属陶瓷复合涂层,利用扫描电镜和能谱仪等检测设备探究CeO_2对涂层组织及摩擦学性能的影响。结果表明:CeO_2细化了等离子喷涂涂层的层片状结构,改善了其结合性;添加不同含量CeO_2的涂层耐磨性均高于未添加涂层,其中2%的添加量,涂层表现出更加优良的性能; CeO_2的加入改变了涂层的磨损机理,由黏着磨损为主过渡为磨粒磨损为主,提高了涂层强度,减轻了磨损程度。  相似文献   

11.
This research delivers a generic understanding of the design and integrated performance of the coating-substrate systems under impact loading, and comprehends the understanding of underpinning failure mechanisms. Repeated severe impacts to the coatings often result in poor performance by cracking and delamination from the coating-substrate interface. The durability of coatings thus depends on the choice of coating and substrate materials, coating deposition process, and service conditions. The design of thermal spray coatings thus requires an optimization of these parameters. This investigation provides insight into the role of coating and substrate properties on the impact resistance of coated materials, and maps the relationship between the impact resistance of WC cermet coatings on a variety of substrates. Results indicate that the delamination resistance of the coating during impact loading not only depends upon the hardness and roughness of the substrate material, but, more importantly, substrates with a higher work-hardening coefficient indicate a higher delamination resistance. The original version of this paper was published as part of the DVS Proceedings: “Thermal Spray Solutions: Advances in Technology and Application,” International Thermal Spray Conference, Osaka, Japan, 10–12 May 2004, CD-Rom, DVS-Verlag GmbH, Düsseldorf, Germany.  相似文献   

12.
Titanium carbide-based coatings have been considered for use in sliding wear resistance applications. Carbides embedded in a metal matrix would improve wear properties, providing a noncontinuous ceramic surface. TiC-Fe coatings obtained by plasma spraying of spray-dried TiC-Fe composite powders containing large and angular TiC particles are not expected to be as resistant as those containing TiC particles formed upon spraying. Coatings containing 60 vol% TiC dispersed in a steel matrix deposited by plasma spraying reactive micropellets, sintered reactive micropellets, and spray-dried TiC-Fe composite powders are compared. The sliding wear resistance of these coatings against steel was measured following the test procedure recommended by the Versailles Advanced Materials and Standards (VAMAS) program, and the inherent surface porosity was evaluated by image analysis. Results show that, after a 1-km sliding distance, TiC-Fe coatings obtained after spraying sintered reactive powders exhibit scar ring three times less deep than sprayed coatings using spray-dried TiC-Fe composite powders. For all coatings considered, porosity is detrimental to wear performance, because it generally lowers the coating strength and provides cavities that favor the adhesion of metal. However, porosity can have a beneficial effect by entrapping debris, thus reducing friction. The good wear behavior of TiC-Fe coatings manufactured by plasma spraying of sintered reactive powders is related to their low coefficient of friction against steel. This is due to the microstructure of these coatings, which consists of 0.3 to 1 μm TiC rounded particles embedded in a steel matrix. Presented at the International Conference on Metallurgical Coatings and Thin Films, ICMCTF-92, Apr 6–10, 1992, San Diego.  相似文献   

13.
The present paper concerns the determination of mechanical properties such as hardness, elastic modulus and yield strength of WC-based cermet coatings for a roller cylinder. With this regard, Co and Ni containing WC-based coatings were sprayed on Ni-Al deposited 316 L stainless steel substrates by using High Velocity Oxygen Fuel (HVOF) technique. These HVOF sprayed coatings were analyzed by Scanning Electron Microscopy (SEM) with an Energy Dispersive Spectroscopy (EDS) system attachment. Mechanical properties of the coatings were examined by Shimadzu Dynamic Ultra-micro hardness test machine in order to determine the Young's modulus through load-unload sensing analysis. In addition to mechanical investigation, hardness-depth and hardness-force curves of WC-based coatings were investigated. It was found that both of these characteristics exhibit significant peak load dependency. Experimental indentation studies were carried out to determine load-unload curves of WC-Co and WC-Ni based coatings under 300 mN, 350 mN, 400 mN and 450 mN applied peak loads. Hardness and Young's modulus of WC-based coatings were calculated from experimental indentation test data of samples. It has been observed that the hardness and Young's modulus of the coating depends on the contact area and indentation size. The originality of this study is to determine the indentation size effect and contact area variations on mechanical properties of HVOF sprayed WC-based coatings.  相似文献   

14.
The present investigation compares the mechanical properties of cold-sprayed and thermally sprayed copper coatings. The mechanical properties of the Cu-coatings are determined by in plane tensile test using micro-flat tensile specimen technique. A deeper view into the type of obtained defects, their stability and their influence on coating performance, is supplied by subsequent failure analyses and the comparison to annealed copper coatings. The results demonstrate that cold-sprayed coatings, processed with helium as propellant gas, show similar performance as highly deformed bulk copper sheets and respective changes in properties after annealing. In the as-sprayed condition, cold-sprayed coatings processed with nitrogen and thermally sprayed coatings show rather brittle behavior. Whereas subsequent annealing can improve the properties of the cold-sprayed coating, processed with nitrogen, such heat treatments have only minor influence on the tensile properties of thermally sprayed copper coatings. The investigation of failure modes for the as-sprayed states and after different heat treatments provided further information concerning particle–particle bonding and the effect of oxides on mechanical properties.  相似文献   

15.
采用无需常规敏化活化的预处理常温超声波化学镀方法制备Ni包覆WC复合粉体,以其作为增强相的粉芯丝材通过高速电弧喷涂技术制备FeMnCrAl/Ni包覆WC涂层。采用光学显微分析(OM)、场发射扫描电镜分析(FE-SEM)、能谱分析(EDS)以及涂层性能测试方法,研究Ni包覆WC复合粉体对涂层组织结构及性能的影响。结果表明:Ni包覆WC复合粉体能改善涂层中各相之间的结合状态,减少涂层中氧化物和孔隙率,提高涂层与基体的结合强度和涂层的内聚强度,改善了涂层抗冲蚀磨损性能。  相似文献   

16.
反应火焰喷涂Mo-FeB-Fe系金属陶瓷涂层的制备及性能   总被引:3,自引:0,他引:3  
以Mo粉、FeB合金粉、Fe粉为原料,将混合粉末在900℃下真空热处理2h,破碎,过75μm筛制备喷涂喂料;采用反应火焰喷涂技术在Q235钢表面制备Mo2FeB2金属陶瓷涂层。将反应热喷涂制备的涂层在真空炉中1000℃下热处理5h,测试涂层的性能。结果表明:在室温球磨15h后粉体中有Fe2B生成,在900℃下烧结后破碎的喷涂粉末中有部分三元硼化物(Mo2FeB2)生成;涂层由占主体的Mo2FeB2和α-Fe相和少量Fe2O3、FeO相及气孔组成。在涂层和基体的结合面处,存在由高硬度涂层到低硬度钢基体的过渡区;涂层和基体的结合强度为32.73MPa,抗热震次数可以达到43次左右,耐磨性比钢基体提高5.28倍;涂层经过1000℃真空扩散热处理后,具有更加优异的力学性能。  相似文献   

17.
含有金属黏结相的热喷涂WC涂层在盐雾中的腐蚀行为   总被引:1,自引:0,他引:1  
研究黏结相化学成分对涂层材料的耐盐雾腐蚀性能的影响,对采用超音速火焰喷涂制得的WC?17Co和WC?10Co?4Cr涂层进行电化学试验和长时间的盐雾腐蚀实验(浓度为5%的NaCl溶液,温度35°C)。结果表明:WC?10Co?4Cr涂层的耐盐雾腐蚀性能优于WC?17Co涂层。对于WC?17Co涂层,主要腐蚀行为除了粘结金属的腐蚀外还包括WC颗粒与粘结相金属之间发生的微点偶腐蚀;对于WC?10Co?4Cr涂层,形成的氧化物有利于抑制金属相与粘结相的腐蚀。说明金属材料成分是影响超音速火焰喷涂WC基涂层耐盐雾腐蚀性能的重要因素之一。  相似文献   

18.
Powder properties of the feedstock used for spray coatings, especially cold-spray coatings, have an influence on the coating properties such as deposition efficiency, morphology and hardness. The effects of pretreatment on Cu feedstock with dendritic morphologies used for cold spraying were investigated. The Cu powders were pretreated into air and vacuum in the temperature range of 50–200 °C at dwell times of 1 and 6 h. The deposition efficiency of the air-annealed feedstock shows an initial increase due to the stress relaxation till the oxidation begins and prevails in bringing about drop in the efficiency. The coatings produced from the vacuum-annealed feedstock had much higher deposition efficiency than the air-annealed feedstock, resulting from the combined effect of stress relaxation and reduction of Cu. Therefore, it was confirmed that the feedstock properties modified by a pretreatment had a significant influence on the properties of cold-sprayed coatings.  相似文献   

19.
Due to their mechanical properties, WC-based cermet coatings are extensively used in wear-resistant applications. These coatings are usually produced using thermal spray processes. However, due to the nature and the environment of these spraying processes, the feedstock powder structure and properties suffer from decomposition, which subsequently degrade the performance of the coatings produced. The cold gas dynamic spraying process appears to be a promising alternative technique to preserve the properties of the feedstock powder during the coating preparation. Although the latter technique can minimize or eliminate the degradation of the sprayed material, the deposition of cermet using this technique is a difficult task. In this study, two types of cermet powders, the nanocrystalline (WC-15Co) and the conventional (WC-10Co4Cr) powders were deposited using the cold gas dynamic spraying and the pulsed gas dynamic spraying processes. The feedstock powders and coatings microstructures were investigated by OM, SEM and XRD, as well as their hardness. The results revealed the possibility of depositing cermet coatings onto aluminum substrates using both processes without any degradation of the carbide phase of the feedstock powder. The cold gas dynamic spraying process experienced difficulty in depositing and building up dense coatings without major defects. The pulsed gas dynamic process produced thick cermet (conventional and nanocrystalline) coatings with low porosity as long as the feedstock powder was preheated above 573 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号