首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the essential oil (EO) constituents from the aerial parts of Satureja intermedia C.A.Mey were detected by GC and GC/MS. The antimicrobial activity of EO on oral pathogens and its cytotoxicity to human cancer cells were determined by the microbroth dilution method and the crystal violet staining method, respectively. Thirty-nine compounds were identified and the main EO constituents were γ-terpinene (37.1%), thymol (30.2%), p-cymene (16.2%), limonene (3.9%), α-terpinene (3.3%), myrcene (2.5%), germacrene B (1.4%), elemicine (1.1%) and carvacrol (0.5%). The S. intermedia EO showed a concentration-dependent decrease in viability of Hep-G2 (hepatocellular carcinoma) and MCF-7 (breast adenocarcinoma) human cancer cell lines (p < 0.05). Antimicrobial screening of S. intermedia EO demonstrated slight antibacterial and antifungal activities against Streptococcus mutants, S. salivarius, Enterococcus faecalis, Staphylococcus aureus, Candida albicans and C. glabrata. Further preclinical studies are needed to assess the efficacy and safety of S. intermedia EO as a new promising anticancer agent.  相似文献   

2.
Photodynamic inactivation (PDI) combined with chitosan has been shown as a promising antimicrobial approach. The purpose of this study was to develop a chitosan hydrogel containing hydroxypropyl methylcellulose (HPMC), chitosan and toluidine blue O (TBO) to improve the bactericidal efficacy for topical application in clinics. The PDI efficacy of hydrogel was examined in vitro against the biofilms of Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa). Confocal scanning laser microscopy (CSLM) was performed to investigate the penetration level of TBO into viable S. aureus biofilms. Incorporation of HMPC could increase the physicochemical properties of chitosan hydrogel including the hardness, viscosity as well as bioadhesion; however, higher HMPC concentration also resulted in reduced antimicrobial effect. CSLM analysis further demonstrated that higher HPMC concentration constrained TBO diffusion into the biofilm. The incubation of biofilm and hydrogel was further performed at an angle of 90 degrees. After light irradiation, compared to the mixture of TBO and chitosan, the hydrogel treated sample showed increased PDI efficacy indicated that incorporation of HPMC did improve antimicrobial effect. Finally, the bactericidal efficacy could be significantly augmented by prolonged retention of hydrogel in the biofilm as well as in the animal model of rat skin burn wounds after light irradiation.  相似文献   

3.

Aims

The relationship between variants in SLCO1B1 and SLCO2B1 genes and lipid-lowering response to atorvastatin was investigated.

Material and Methods

One-hundred-thirty-six unrelated individuals with hypercholesterolemia were selected and treated with atorvastatin (10 mg/day/4 weeks). They were genotyped with a panel of ancestry informative markers for individual African component of ancestry (ACA) estimation by SNaPshot® and SLCO1B1 (c.388A>G, c.463C>A and c.521T>C) and SLCO2B1 (−71T>C) gene polymorphisms were identified by TaqMan® Real-time PCR.

Results

Subjects carrying SLCO1B1 c.388GG genotype exhibited significantly high low-density lipoprotein (LDL) cholesterol reduction relative to c.388AA+c.388AG carriers (41 vs. 37%, p = 0.034). Haplotype analysis revealed that homozygous of SLCO1B1*15 (c.521C and c.388G) variant had similar response to statin relative to heterozygous and non-carriers. A multivariate logistic regression analysis confirmed that c.388GG genotype was associated with higher LDL cholesterol reduction in the study population (OR: 3.2, CI95%:1.3–8.0, p < 0.05).

Conclusion

SLCO1B1 c.388A>G polymorphism causes significant increase in atorvastatin response and may be an important marker for predicting efficacy of lipid-lowering therapy.  相似文献   

4.
The Bactigras® paraffin tulle coated with chlorhexidine is normally used for the treatment of donor-site wounds in burn patients who received split-thickness skin grafts in several centers. It has some disadvantages, such as adhesion to wound surfaces and pain from the irritation caused by this dressing. The Telfa AMD®, a non-adherent wound dressing which consists of absorbent cotton fibers impregnated with polyhexamethylene biguanide enclosed in a sleeve of thermoplastic polymers, is a new option for donor-site wound care which causes less adherence to the wound. The purpose of this study was to compare clinical efficacy of these two dressings for the management of donor-site wounds. Thirty-two patients who received split-thickness skin grafts by donor site harvesting from the thigh were enrolled in this study and randomized into two groups receiving either the Bactigras® or the Telfa AMD® wound treatment. Re-epithelialization, pain, infection and cost-effectiveness analyses were compared between both groups. The results showed that there was no significant difference in age, area of donor sites or length of hospital stays between the groups (p > 0.05). However, the day of re-epithelialization (≥90%) was significantly shorter in patients treated with the Telfa AMD® compared to the Bactigras® group (14.00 ± 3.05 vs. 9.25 ± 1.88 days for Bactigras® and Telfa AMD® groups, respectively, p < 0.001). The average pain score was also significantly lower in the Telfa AMD® group (1.57 ± 0.55 vs. 4.70 ± 1.16, p < 0.001). There was no difference in the cost of treatment between the groups (4.64 ± 1.97 vs. 5.72 ± 2.54 USD, p = 0.19). This study indicated that the Telfa AMD® was an effective dressing for the treatment of donor-site wounds.  相似文献   

5.
Enhancing the phagocytosis of immune cells with medicines provides benefits to the physiological balance by removing foreign pathogens and apoptotic cells. The fungal immunomodulatory protein (FIP) possessing various immunopotentiation functions may be a good candidate for such drugs. However, the effect and mechanism of FIP on the phagocytic activity is limitedly investigated. Therefore, the present study determined effects of Cordyceps militaris immunomodulatory protein (CMIMP), a novel FIP reported to induce cytokines secretion, on the phagocytosis using three different types of models, including microsphere, Escherichia Coli and Candida albicans. CMIMP not only significantly improved the phagocytic ability (p < 0.05), but also enhanced the bactericidal activity (p < 0.05). Meanwhile, the cell size, especially the cytoplasm size, was markedly increased by CMIMP (p < 0.01), accompanied by an increase in the F-actin expression (p < 0.001). Further experiments displayed that CMIMP-induced phagocytosis, cell size and F-actin expression were alleviated by the specific inhibitor of TLR4 (p < 0.05). Similar results were observed in the treatment with the inhibitor of the NF-κB pathway (p < 0.05). In conclusion, it could be speculated that CMIMP promoted the phagocytic ability of macrophages through increasing F-actin expression and cell size in a TLR4-NF-κB pathway dependent way.  相似文献   

6.
Staphylococcal-associated device-related infections (DRIs) represent a significant clinical challenge causing major medical and economic sequelae. Bacterial colonization, proliferation, and biofilm formation after adherence to surfaces of the indwelling device are probably the primary cause of DRIs. To address this issue, we incorporated constructs of silica-binding peptide (SiBP) with ClyF, an anti-staphylococcal lysin, into functionalized coatings to impart bactericidal activity against planktonic and sessile Staphylococcus aureus. An optimized construct, SiBP1-ClyF, exhibited improved thermostability and staphylolytic activity compared to its parental lysin ClyF. SiBP1-ClyF-functionalized coatings were efficient in killing MRSA strain N315 (>99.999% within 1 h) and preventing the growth of static and dynamic S. aureus biofilms on various surfaces, including siliconized glass, silicone-coated latex catheter, and silicone catheter. Additionally, SiBP1-ClyF-immobilized surfaces supported normal attachment and growth of mammalian cells. Although the recycling potential and long-term stability of lysin-immobilized surfaces are still affected by the fragility of biological protein molecules, the present study provides a generic strategy for efficient delivery of bactericidal lysin to solid surfaces, which serves as a new approach to prevent the growth of antibiotic-resistant microorganisms on surfaces in hospital settings and could be adapted for other target pathogens as well.  相似文献   

7.
In this work, novel docetaxel (DTX) -loaded Tween 80-free Pluronic P123 (P123) micelles with improved therapeutic effect were developed. The freeze-dried DTX-loaded P123 micelles (DTX-micelles) were analyzed by HPLC, TEM and DLS to determine the DTX loading, micelle morphology, size, respectively. The in vitro cytotoxic activity of DTX-micelles in HepG2, A549 and malignant melanoma B16 cells were evaluated by MTT assay. The corresponding in vivo antitumor efficacy was assessed in Kunming mice bearing B16 tumor after intravenous administration. The DTX-loading and efficiency into the micelles were 2.12 ± 0.09% and 86.34 ± 3.32%, respectively. The DTX-micelles were spherical with a mean particle size of 50.7 nm and size distribution from 22 to 84 nm, which suggested that they should be able to selectively accumulate in solid tumors by means of EPR effect, with a zeta potential of −12.45 ± 3.24 mV. The in vitro release behavior of DTX from DTX-micelles followed the Weibull equation. Compared with Duopafei®, DTX-micelles showed higher cytotoxicity against HepG2 (P < 0.01), A549 (P < 0.05) and B16 (P < 0.01) cells. In addition, DTX-micelles exhibited remarkable antitumor activity and reduced toxicity on B16 tumor in vivo. The tumor inhibition rates (TIR) of DTX-micelles was 91.6% versus 76.3% of Duopafei® (P < 0.01). These results suggested that P123 micelles might be considered as an effective DTX delivery system.  相似文献   

8.
Bacterial colonization and transmission via surfaces increase the risk of infection. In this study, we design and employ novel adhesive antimicrobial peptides to prevent bacterial contamination of surfaces. Repeats of 3,4-dihydroxy-L-phenylalanine (DOPA) were added to the C-terminus of NKC, a potent synthetic antimicrobial peptide, and the adhesiveness and antibacterial properties of the resulting peptides are evaluated. The peptide is successfully immobilized on polystyrene, titanium, and polydimethylsiloxane surfaces within 10 min in a one-step coating process with no prior surface functionalization. The antibacterial effectiveness of the NKC-DOPA5-coated polystyrene, titanium, and polydimethylsiloxane surfaces is confirmed by complete inhibition of the growth of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus within 2 h. The stability of the peptide coated on the substrate surface is maintained for 84 days, as confirmed by its bactericidal activity. Additionally, the NKC-DOPA5-coated polystyrene, titanium, and polydimethylsiloxane surfaces show no cytotoxicity toward the human keratinocyte cell line HaCaT. The antimicrobial properties of the peptide-coated surfaces are confirmed in a subcutaneous implantation animal model. The adhesive antimicrobial peptide developed in this study exhibits potential as an antimicrobial surface-coating agent for efficiently killing a broad spectrum of bacteria on contact.  相似文献   

9.
Acinetobacter baumannii is a dangerous hospital pathogen primarily due to its ability to form biofilms on different abiotic and biotic surfaces. The present study investigated the effect of riboflavin- and chlorophyllin-based antimicrobial photodynamic therapy, performed with near-ultraviolet or blue light on the viability of bacterial cells in biofilms and their structural stability, also determining the extent of photoinduced generation of intracellular reactive oxygen species as well as the ability of A. baumannii to form biofilms after the treatment. The efficacy of antimicrobial photodynamic therapy was compared with that of light alone and the role of the photosensitizer type on the photosensitization mechanism was demonstrated. We found that the antibacterial effect of riboflavin-based antimicrobial photodynamic therapy depends on the ability of photoactivated riboflavin to generate intracellular reactive oxygen species but does not depend on the concentration of riboflavin and pre-incubation time before irradiation. Moreover, our results suggest a clear interconnection between the inactivation efficiency of chlorophyllin-based antimicrobial photodynamic therapy and the sensitivity of A. baumannii biofilms to used light. In summary, all the analyzed results suggest that riboflavin-based antimicrobial photodynamic therapy and chlorophyllin-based antimicrobial photodynamic therapy have the potential to be applied as an antibacterial treatment against A. baumannii biofilms or as a preventive measure against biofilm formation.  相似文献   

10.
The wiping of high-touch healthcare surfaces made of metals, ceramics and plastics to remove bacteria is an accepted tool in combatting the transmission of healthcare-associated infections (HCAIs). In practice, surfaces may be repeatedly wiped using a single wipe, and the potential for recontamination may be affected by various factors. Accordingly, we studied how the surface to be wiped, the type of fibre in the wipe and how the presence of liquid biocide affected the degree of recontamination. Experiments were conducted using metal, ceramic and plastic healthcare surfaces, and two different wipe compositions (hygroscopic and hydrophilic), with and without liquid biocide. Despite initially high removal efficiencies of >70% during initial wiping, all healthcare surfaces were recontaminated with E. coli, S. aureus and E. faecalis when wiped more than once using the same wipe. Recontamination occurred regardless of the fibre composition of the wipe or the presence of a liquid biocide. The extent of recontamination by E. coli, S. aureus and E. faecalis bacteria also increased when metal healthcare surfaces possessed a higher microscale roughness (<1 μm), as determined by Atomic Force Microscopy (AFM). The high propensity for healthcare surfaces to be re-contaminated following initial wiping suggests that a “One wipe, One surface, One direction, Dispose” policy should be implemented and rigorously enforced.  相似文献   

11.
It is a significant challenge for a titanium implant, which is a bio-inert material, to recruit osteogenic factors, such as osteoblasts, proteins and blood effectively when these are contained in a biomaterial. The objective of this study was to examine the effect of ultraviolet (UV)-treatment of titanium on surface wettability and the recruitment of osteogenic factors when they are contained in an atelocollagen sponge. UV treatment of a dental implant made of commercially pure titanium was performed with UV-light for 12 min immediately prior to the experiments. Superhydrophilicity on dental implant surfaces was generated with UV-treatment. The collagen sponge containing blood, osteoblasts, or albumin was directly placed on the dental implant. Untreated implants absorbed only a little blood from the collagen sponge, while the UV-treated implants absorbed blood rapidly and allowed it to spread widely, almost over the entire implant surface. Blood coverage was 3.5 times greater for the UV-treated implants (p < 0.001). Only 6% of the osteoblasts transferred from the collagen sponge to the untreated implants, whereas 16% of the osteoblasts transferred to the UV-treated implants (p < 0.001). In addition, a weight ratio between transferred albumin on the implant and measured albumin adsorbed on the implant was 17.3% in untreated implants and 38.5% in UV-treated implants (p < 0.05). These results indicated that UV treatment converts a titanium surface into a superhydrophilic and bio-active material, which could recruite osteogenic factors even when they were contained in a collagen sponge. The transfer and subsequent diffusion and adsorption efficacy of UV-treated titanium surfaces could be useful for bone formation when titanium surfaces and osteogenic factors are intervened with a biomaterial.  相似文献   

12.
Electrochemically activated solutions (ECAS) are generated by electrolysis of NaCl solutions, and demonstrate broad spectrum antimicrobial activity and high environmental compatibility. The biocidal efficacy of ECAS at the point of production is widely reported in the literature, as are its credentials as a “green biocide.” Acidic ECAS are considered most effective as biocides at the point of production and ill suited for extended storage. Acidic ECAS samples were stored at 4 °C and 20 °C in glass and polystyrene containers for 398 days, and tested for free chlorine, pH, ORP and bactericidal activity throughout. ORP and free chlorine (mg/L) in stored ECAS declined over time, declining at the fastest rate when stored at 20 °C in polystyrene and at the slowest rate when stored at 4 °C in glass. Bactericidal efficacy was also affected by storage and ECAS failed to produce a 5 log10 reduction on five occasions when stored at 20 °C. pH remained stable throughout the storage period. This study represents the longest storage evaluation of the physiochemical parameters and bactericidal efficacy of acidic ECAS within the published literature and reveals that acidic ECAS retain useful bactericidal activity for in excess of 12 months, widening potential applications.  相似文献   

13.
Antibiotic overuse is one of the major drivers in the generation of antibiotic resistant “super bugs” that can potentially cause serious effects on health. In this study, we reported that the polycationic polysaccharide, chitosan could improve the efficacy of a given antibiotic (gentamicin) to combat bacterial biofilms, the universal lifestyle of microbes in the world. Short- or long-term treatment with the mixture of chitosan and gentamicin resulted in the dispersal of Listeria monocytogenes (L. monocytogenes) biofilms. In this combination, chitosan with a moderate molecular mass (~13 kDa) and high N-deacetylation degree (~88% DD) elicited an optimal anti-biofilm and bactericidal activity. Mechanistic insights indicated that chitosan facilitated the entry of gentamicin into the architecture of L. monocytogenes biofilms. Finally, we showed that this combination was also effective in the eradication of biofilms built by two other Listeria species, Listeria welshimeri and Listeria innocua. Thus, our findings pointed out that chitosan supplementation might overcome the resistance of Listeria biofilms to gentamicin, which might be helpful in prevention of gentamicin overuse in case of combating Listeria biofilms when this specific antibiotic was recommended.  相似文献   

14.
Semaphorin4D (SEMA4D) has been regarded as an important protein in tumor angiogenesis, though originally identified in neurodevelopment. SEMA4D is extensively expressed in several malignant solid tumors. Nevertheless, the function and expression of SEMA4D in epithelial ovarian cancer (EOC) is as yet not well understood. The aim of this study was to investigate SEMA4D expression in EOC and evaluate its clinical–pathological and prognostic significance. Immunohistochemistry was used to analyze SEMA4D expression and tumor angiogenesis-related proteins (HIF-1α and VEGF) in tissues from 40 patients with normal ovarian epithelia and 124 EOC patients. SEMA4D was found to be expressed in 61.3% of the 124 EOC tissues, which was significantly higher than in the normal ovarian epithelia (p < 0.001). SEMA4D expression correlated with HIF-1α and VEGF closely (ρ = 0.349 and 0.263, p < 0.001). Positive SEMA4D staining was significantly higher in tissues from patients with low histological grade, FIGO stage III-IV, lymph node metastasis and residual disease ≥1 cm (p < 0.05). In the Cox proportional hazard mode, SEMA4D expression and histologic grade were independent indicators of overall survival (OS) and progress-free survival (PFS) for EOC patients. These findings suggest that the cooperation of SEMA4D, HIF-1α, and VEGF may indicate poor prognosis for patients with EOC, thereby demonstrating that SEMA4D and its role in angiogenesis in EOC warrants further study.  相似文献   

15.
Administration of antioxidants and anti-inflammatory agents is an effective strategy for preventing ultraviolet (UV) irradiation-induced skin damage. Artocarpus communis possesses several pharmacological activities, such as antioxidant, anticancer and anti-inflammation. However, the photoprotective activity of methanol extract of A. communis heartwood (ACM) in ultraviolet irradiation-induced skin damage has not yet been investigated. The present study was performed using ultraviolet absorption, histopathological observation, antioxidant and anti-inflammation assays to elucidate the mechanism of the photoprotective activity of ACM. Our results indicated that ACM displayed a UVA and UVB absorption effect and then effectively decreased scaly skin, epidermis thickness and sunburn cells during ultraviolet irradiation in hairless mice. ACM not only decreased ultraviolet irradiation-mediated oxidative stress, including lowering the overproduction of reactive oxygen species and lipid peroxidation (p < 0.05), but also reduced the levels of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin 1β. Additionally, ACM can decrease the synthesis of cytosolic phospholipase A2, cyclooxygenase, inducible nitric oxide synthase and vascular cell adhesion molecular-1 via inhibiting TNF-α-independent pathways (p < 0.05) in UVB-mediated inflammation and formation of sunburn cells. Consequently, we concluded that ACM extract has a photoprotective effect against UVB-induced oxidative stress and inflammation due to its sunscreen property, and its topical formulations may be developed as therapeutic and/or cosmetic products in further studies.  相似文献   

16.
To evaluate the prognostic factors and indexes of a series of 93 patients with breast cancer and brain metastases (BM) in a single institution. Treatment outcomes were evaluated according to the major prognostic indexes (RPA, BSBM, GPA scores) and breast cancer subtypes. Independent prognostic factors for overall survival (OS) were identified. The median OS values according to GPA 0–1, 1.5–2, 2.5–3 and 3.5–4, were 4.5, 9.5, 14.2 and 19.1 months, respectively (p < 0.0001) and according to genetic subtypes, they were 5, 14.2, 16.5 and 17.1 months for basal-like, luminal A and B and HER, respectively (p = 0.04). Using multivariate analysis, we established a new grading system using the six factors that were identified as indicators of longer survival: age under 60 (p = 0.001), high KPS (p = 0.007), primary tumor control (p = 0.05), low number of extracranial metastases and BM (p = 0.01 and 0.0002, respectively) and triple negative subtype (p = 0.002). Three groups with significantly different median survival times were identified: 4.1, 9.5 and 26.3 months, respectively (p < 0.0001). Our new grading system shows that prognostic indexes could be improved by using more levels of classification and confirms the strength of biological prognostic factors.  相似文献   

17.
Marine biofouling is a worldwide problem in coastal areas and affects the maritime industry primarily by attachment of fouling organisms to solid immersed surfaces. Biofilm formation by microbes is the main cause of biofouling. Currently, application of antibacterial materials is an important strategy for preventing bacterial colonization and biofilm formation. A natural three-dimensional carbon skeleton material, TRP (treated rape pollen), attracted our attention owing to its visible-light-driven photocatalytic disinfection property. Based on this, we hypothesized that TRP, which is eco-friendly, would show antifouling performance and could be used for marine antifouling. We then assessed its physiochemical characteristics, oxidant potential, and antifouling ability. The results showed that TRP had excellent photosensitivity and oxidant ability, as well as strong anti-bacterial colonization capability under light-driven conditions. Confocal laser scanning microscopy showed that TRP could disperse pre-established biofilms on stainless steel surfaces in natural seawater. The biodiversity and taxonomic composition of biofilms were significantly altered by TRP (p < 0.05). Moreover, metagenomics analysis showed that functional classes involved in the antioxidant system, environmental stress, glucose–lipid metabolism, and membrane-associated functions were changed after TRP exposure. Co-occurrence model analysis further revealed that TRP markedly increased the complexity of the biofilm microbial network under light irradiation. Taken together, these results demonstrate that TRP with light irradiation can inhibit bacterial colonization and prevent initial biofilm formation. Thus, TRP is a potential nature-based green material for marine antifouling.  相似文献   

18.
Despite the intensive investigation of the molecular mechanism of skeletal muscle hypertrophy, the underlying signaling processes are not completely understood. Therefore, we used an overload model, in which the main synergist muscles (gastrocnemius, soleus) of the plantaris muscle were surgically removed, to cause a significant overload in the remaining plantaris muscle of 8-month-old Wistar male rats. SIRT1-associated pro-anabolic, pro-catabolic molecular signaling pathways, NAD and H2S levels of this overload-induced hypertrophy were studied. Fourteen days of overload resulted in a significant 43% (p < 0.01) increase in the mass of plantaris muscle compared to sham operated animals. Cystathionine-β-synthase (CBS) activities and bioavailable H2S levels were not modified by overload. On the other hand, overload-induced hypertrophy of skeletal muscle was associated with increased SIRT1 (p < 0.01), Akt (p < 0.01), mTOR, S6 (p < 0.01) and suppressed sestrin 2 levels (p < 0.01), which are mostly responsible for anabolic signaling. Decreased FOXO1 and SIRT3 signaling (p < 0.01) suggest downregulation of protein breakdown and mitophagy. Decreased levels of NAD+, sestrin2, OGG1 (p < 0.01) indicate that the redox milieu of skeletal muscle after 14 days of overloading is reduced. The present investigation revealed novel cellular interactions that regulate anabolic and catabolic processes in the hypertrophy of skeletal muscle.  相似文献   

19.
The restoration of innate immune responses has potential as a novel therapeutic strategy for chronic hepatitis C (CHC). We compared the efficacy and safety of induction therapy (IT) with natural interferon-β (n-IFN-β) followed by pegylated-IFN-α/ribavirin (PR) alone (group A, n = 30) and IT with a protease inhibitor (PI) (simeprevir or vaniprevir)/PR (group B, n = 13) in CHC patients with genotype 1b and high viral loads. During IT with nIFN-β, virologic response rates in group A and group B were 10% and 8% (p = 0.6792) at week 4, 30% and 16% (p = 0.6989) at week 12 and 47% and 20% (p = 0.0887) at week 24 respectively. During and after the treatment with PR alone or PI/PR, virologic response rates in groups A and B were 50% and 82% (p = 0.01535) at week 4, 53% and 91% (p = 0.006745) at week 8, 57% and 91% (p = 0.001126) at week 12, 57% and 100% (p < 0.001845) at the end of the treatment and 57% and 80% (p < 0.005166) after treatment cessation. IT with PI/PR linked to the restoration of innate immune response was tolerated well, overcame virological breakthrough, enhanced early virologic responses, and resulted in a sustained virologic response in difficult-to-treat CHC patients. IT with PI/PR is beneficial for treating difficult-to-treat CHC patients.  相似文献   

20.
Minerals are required for the establishment and maintenance of pregnancy and regulation of fetal growth in mammals. Lentiviral-mediated RNA interference (RNAi) of chorionic somatomammotropin hormone (CSH) results in both an intrauterine growth restriction (IUGR) and a non-IUGR phenotype in sheep. This study determined the effects of CSH RNAi on the concentration and uptake of calcium, phosphate, and vitamin D, and the expression of candidate mRNAs known to mediate mineral signaling in caruncles (maternal component of placentome) and cotyledons (fetal component of placentome) on gestational day 132. CSH RNAi Non-IUGR pregnancies had a lower umbilical vein–umbilical artery calcium gradient (p < 0.05) and less cotyledonary calcium (p < 0.05) and phosphate (p < 0.05) compared to Control RNAi pregnancies. CSH RNAi IUGR pregnancies had less umbilical calcium uptake (p < 0.05), lower uterine arterial and venous concentrations of 25(OH)D (p < 0.05), and trends for lower umbilical 25(OH)D uptake (p = 0.059) compared to Control RNAi pregnancies. Furthermore, CSH RNAi IUGR pregnancies had decreased umbilical uptake of calcium (p < 0.05), less uterine venous 25(OH)D (vitamin D metabolite; p = 0.055), lower caruncular expression of SLC20A2 (sodium-dependent phosphate transporter; p < 0.05) mRNA, and lower cotyledonary expression of KL (klotho; p < 0.01), FGFR1 (fibroblast growth factor receptor 1; p < 0.05), FGFR2 (p < 0.05), and TRPV6 (transient receptor potential vanilloid member 6; p < 0.05) mRNAs compared to CSH RNAi Non-IUGR pregnancies. This study has provided novel insights into the regulatory role of CSH for calcium, phosphate, and vitamin D utilization in late gestation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号