首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
X70管线钢微观组织分析   总被引:7,自引:0,他引:7  
X70管线钢的微观组织表现为多种类型混合组织,主要有多边形铁素体、块状铁素体(准多边形铁素体)、针状铁素体、粒状贝氏体、珠光体和M/A岛等.各类组织的比例随加工工艺不同变化较大.提高冷却速度和降低终冷温度可以增加针状铁素体的比例.冷却速度较低(2℃/s)时,组织中出现明显的珠光体.  相似文献   

2.
文章以38CrMoAl钢为研究对象,利用FORMASTOR-F全自动相变仪,测定了试验钢连续冷却转变的CCT曲线。结果表明:当冷却速度为0.2~0.5℃/s时,室温组织为先共析铁素体+珠光体;当冷却速度为0.5~1℃/s时,出现少量贝氏体,室温组织为铁素体+珠光体+贝氏体;当冷却速度为1℃/s时,在贝氏体转变区最上部,靠近Bs的温度处形成贝氏体,室温下组织为上贝氏体;当冷却速度为2~5℃/s时,马氏体不断增加,贝氏体逐渐减少,室温下为贝氏体+马氏体的混合组织;当冷却速度不小于5℃/s,室温下组织全部为马氏体。研究结果为热处理工艺的制定提供了参考依据。  相似文献   

3.
利用Gleeble 1500热模拟机测定了簿板坯连铸连轧EAF-CSP工艺生产的低碳含锰钢经奥氏体区二次变形后的CCT曲线.实验钢含有0.17%C,1.21%Mn和0.28%Si(质量分数).研究表明:提高热轧后的冷却速度使Ar_3温度降低,导致试验钢的晶粒进一步细化;冷速大于20℃/s时,出现贝氏体和铁素体的混合组织,可降低钢的屈强比;790℃终轧,550℃卷曲时出现铁素体/珠光体带状组织,提高冷速使溶质(如Mn和C)富集区在形成珠光体之前完成奥氏体—铁素体相变是避免生成铁素体/珠光体带状组织的有效方法.  相似文献   

4.
采用热膨胀法并结合金相组织分析及硬度变化来测定12Cr2Mo1R钢变形奥氏体的连续冷却转变温度,研究了钢的相变规律,结果表明,12Cr2Mo1R钢未变形奥氏体连续冷却转变,冷却速度<0.27 ℃/s时,组织为贝氏体+铁素体+珠光体;在0.27~8.4 ℃/s之间时,组织为贝氏体;>8.4 ℃/s时,组织为马氏体+贝氏体。变形奥氏体连续冷却转变,冷却速度<5 ℃/s时,组织为铁素体+珠光体+贝氏体;在5~20 ℃/s之间时,主要为贝氏体组织;>20 ℃/s时,得到的组织为马氏体+贝氏体。形变加速了奥氏体连续相变,使连续冷却相变温度提高。钢中Cr、Mo等合金元素,提高了过冷奥氏体的稳定性,使连续转变过程中出现了亚稳奥氏体区,提高了贝氏体的淬透性。  相似文献   

5.
利用MMS-100热/力模拟机,研究了不同冷却速度下铌高性能结构钢奥氏体动态转变规律及不同终轧温度和不同压缩比对显微组织的影响。结果表明:在冷却速度为1~5℃/s得到完全的铁素体和珠光体,且随冷速增大,晶粒明显细化,珠光体细小分散,当冷却速度大于15℃/s时,得到完全贝氏体组织;随变形温度的降低,铁素体晶粒细化,珠光体的球团和片层间距减小,组织的均匀性改善;随变形程度的升高,铁素体体积分数增加,且组织细小均匀。铌裔陛能结构钢终轧后冷却速度应控制在5℃/s左右,终轧温度选择850℃。  相似文献   

6.
通过热模拟试验、金相组织和维氏硬度检测方法,研究了管线钢X70在不同冷却速度、冷却方式及回火状态条件下的组织与硬度变化规律。研究表明:连续冷却方式下,随着冷却速度的增加,试验钢回火后,硬度增加变缓;阶梯冷却方式下,随着冷却速度的增加,试验钢硬度增加,经回火后硬度提高;阶梯与连续冷却方式相比,回火状态的试验钢硬度高。冷却速度为1℃/s时,组织为贝氏体+铁素体+少量珠光体,连续冷却条件下铁素体呈块状,珠光体团粗大,阶梯冷却条件下,提高变形后的冷却速度获得更多针状铁素体;当冷却速度大于5℃/s时,试验钢的组织为粒状贝氏体,颗粒状MA含量明显增多。不同冷却速度下的试样经过650℃,30 min回火后,珠光体含量增加,分布更均匀;随着冷却速度的增加,珠光体组织减少。  相似文献   

7.
文章通过测定BT-65 MnRE钢在不同冷速下的连续冷却转变曲线,利用金相显微镜观察了不同冷速下的显微组织.结果表明:试验钢BT-65 MnRE的相变点Ac1为707℃,Ac3为764℃,当冷却速度为1~4℃/s时,室温组织为珠光体+先共析铁素体,当冷却速度为5~8℃/s时,室温组织为珠光体+贝氏体+马氏体+少量铁素体,当冷却速度为10~30℃/s时,室温组织为珠光体+马氏体+少量铁素体,当冷却速度大于40℃/s时,室温组织为马氏体.  相似文献   

8.
文章通过使用Formastor-F型全自动相变仪对700 MPa级高强钢的连续冷却转变曲线(CCT曲线)进行了测定,分析了700 MPa级高强钢在0.5~118℃/s之间各种冷速下的显微组织形貌。结果显示,试验钢冷却速度为0.5℃/s时,转变产物为铁素体和珠光体;冷却速度高于1℃/s时,开始形成贝氏体组织;随着冷却速度的逐渐升高,贝氏体组织开始增加,珠光体组织开始减少,当冷却速度为10℃/s时,珠光体组织消失,组织为铁素体和贝氏体;当冷却速度增加到118℃/s时,转变产物以贝氏体为主。通过对700 MPa级高强钢的CCT曲线和显微组织分析为实际生产过程中热处理工艺的制定提供了理论依据。  相似文献   

9.
文章以低碳中锰钢为研究对象,利用FORMASTOR-F全自动相变仪,测定了试验钢连续冷却转变的CCT曲线.结果表明:冷却速度为0.1~0.5℃/s时,室温组织为先共析铁素体+珠光体;冷却速度为1~2℃/s时,出现粒状贝氏体,室温组织为铁素体+珠光体+粒状贝氏体;当冷速为5~10℃/s时,贝氏体逐渐向马氏体转变,马氏体不断增加,室温下为马氏体+贝氏体混合组织;当冷速大于10.0℃/s,室温下为马氏体组织.为热处理工艺的制定提供了参考依据.  相似文献   

10.
利用热模拟实验机Gleeble-2000,对Q500q钢连续冷却转变行为以及在650~300℃温度区间的相变行为进行了研究及生产试制.结果表明:当冷速为1~4℃/s时,试验钢的微观组织由铁素体和珠光体组成.当冷速增至4~16℃/s时,发生贝氏体相变;随着冷却速度的增加,贝氏体组织更为细化且体积分数增加.当冷却速度大于4℃/s后,试验钢在650~300℃冷却速度减半时,贝氏体相变的终了温度升高,贝氏体相变区间缩小,与连续冷却转变相比组织差距不大.采用两种不同的冷却方式生产试制后,两组试验钢的力学性能和金相显微组织一致,说明650℃以下可以采用缓冷坑堆冷的方式来提高钢板的探伤合格率.  相似文献   

11.
控制轧制和控制冷却工艺的研究   总被引:3,自引:0,他引:3  
控轧与控冷工艺是一项节约合金,简化工序,节约能源的先进轧钢技术,通过对控轧与控冷工艺的具体分析提出,控轧与控冷工艺能充分挖掘钢材的潜力,大幅度提高钢材的综合性能,通过对控轧控冷工艺在中厚板及带钢生产中应用的分析,说明控轧控冷工艺能给冶金工业及社会带来的巨大的经济效益。  相似文献   

12.
自动控轧工艺在中厚板双四辊轧机上的应用   总被引:1,自引:0,他引:1  
济钢中厚板厂双四辊轧机控制轧制系统由两级高速度的过程控制网络进行计算机控制,精确计算、控制轧制中关键工艺参数,选择合适的中问坯厚度,采用一次或二次控轧方式,使传统轧制工艺和自动控轧技术达到较好的结合,工艺控制更精确,钢板性能更稳定,品种专用钢板的一次合格率在系统投用后由90%达到近100%,机时产量由原来lOOt提高到140t。  相似文献   

13.
高强度管线钢的工艺与组织性能   总被引:2,自引:0,他引:2  
高强度管线钢是在低碳含锰钢基础上,添加微量的铌、钒、钛微合金化处理,采用精炼提高钢质纯净度,降低钢中硫、磷含量,从钢坯加热开始加以控制低温烧钢,粗轧区采用再结晶控制轧制,精轧区奥氏体非再结晶区的控制轧制,轧后控冷,进而得到极细(晶粒度11-12级)的铁素体和少量珠光体组织,满足管线钢苛刻的强度、韧性要求。  相似文献   

14.
对2013年前申请的控轧控冷技术领域全球专利文献进行分析研究,揭示了自该技术开发以来的技术进步、专利布局、发展演化、国内外发展状况、竞争对手之间的优势及差距等,以期为企业和科研机构建立研究发展方向、发掘竞争对手、建立战略联盟决策提供信息支持。  相似文献   

15.
水幕冷却系统的应用   总被引:2,自引:0,他引:2  
为了改善钢材的综合性能,提高产量和生产率,济南钢铁公司中板厂在实际生产中引进了控制冷却技术,结合水幕冷却的实际应用情况,对水幕冷却方式的特点,控冷模型及其计算机系统进行了全面的分析,为改进我国中厚板控制冷却系统提供了范例。  相似文献   

16.
介绍了控轧控冷工艺原理及其在生产SWRCH08A(Φ6.5)中的应用,并提出了生产中控轧控冷工艺的具体参数.  相似文献   

17.
介绍了控制轧制和控制冷却的技术特点及其在邯钢连轧棒材生产中的应用。  相似文献   

18.
石钢GCr15轴承钢控制轧制和控制冷却生产实践   总被引:1,自引:0,他引:1  
介绍石钢Φ 50 mm GCr15轴承钢圆钢的控制轧制和控制冷却的生产工艺,与原工艺进行了对比.  相似文献   

19.
 介绍了56Nb钢后,根据铁道接头夹板(鱼尾板)的性能要求并结合厂方的设备状况制定了56Nb钢鱼尾板材料的生产工艺:用8 t电弧炉冶炼,于1 570~1 580 ℃下铸成450 kg钢锭;将钢锭加热到1 250~1 270 ℃,经600系列2机架轧机5道次轧制后修整成185 mm×195 mm方坯;再将钢坯加热到1 050~1 150 ℃,由600系列轧机(2机架)共15道次轧制,用350系列(3机架)精轧机经3道次精轧成60 kg/m的鱼尾板材料,终轧温度约900 ℃。接着,入(70±10)℃水中淬火后带温于罩式炉内560 ℃回火2 h。经硬度、金相、拉伸、冷弯、冲击和SEM等测定及分析后,确认56Nb钢鱼尾板质量达到了TB/T2345 93《43~75 kg/m钢轨用鱼尾板供货技术要求》的规定,且其强韧性指标较平炉冶炼的56Nb钢有显著提高。  相似文献   

20.
陈贻宏  郑琳 《钢铁》1996,31(12):26-30
对热轧管线用钢板X60H,X65H试轧过程中的轧制工艺和力能参数进行了较全面的分析研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号