首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 858 毫秒
1.
The serine proteinases, tissue-type (tPA) and urokinase (uPA) plasminogen activator, are implicated in the ovulatory processes via their ability to convert plasminogen to its active form, plasmin. One mechanism for regulation of plasmin-directed ovarian extracellular matrix remodelling during follicle rupture and corpus luteum formation is through inhibition of plasminogen activation by the plasminogen activator inhibitors (PAI-1 and PAI-2). The effect of the preovulatory gonadotrophin surge on the temporal and spatial regulation of expression of PAI-1 and PAI-2 mRNA and PAI activity in preovulatory bovine follicles and new corpora lutea collected at 0, 6, 12, 18, 24 and 48 h after a GnRH-induced gonadotrophin surge was examined. Both PAI-1 and PAI-2 mRNAs were upregulated markedly after the gonadotrophin surge, with the highest expression observed in follicles collected at about the time of ovulation (24 h) and in corpora lutea (48 h). PAI-1 mRNA was localized primarily to the thecal layer of preovulatory follicles. In contrast, PAI-2 mRNA was localized specifically to the granulosa cell layer. Significant PAI activity was detected in follicle extracts, but temporal or spatial differences in PAI activity were not detected in response to the gonadotrophin surge. These results indicate that PAI-1 and PAI-2 mRNAs are upregulated in preovulatory bovine follicles after the gonadotrophin surge in a cell-specific way. Regulation of PAI-1 and PAI-2 may help to control plasminogen activator activity associated with ovulation and early corpus luteum formation.  相似文献   

2.
3.
A duplex grey-scale and colour-Doppler ultrasound instrument was used to study the changes in the wall of the preovulatory follicle in mares. When the follicle reached > or =35 mm (hour 0), mares were randomized into control (n = 16) and human chorionic gonadotropin (hCG)-treated (n = 16) groups. The hCG treatment was given at hour 0. Scanning was done every 12 h until hour 36, every hour between hours 36 and 48, and every 12 h thereafter until ovulation. Blood was sampled every 12 h for oestradiol assay. During the period 0-24 h post-treatment, oestradiol concentrations decreased in the hCG group and increased in the controls (significant interaction). During the period 0-36 h post-treatment, thickness and echogenicity of the granulosa increased in the hCG group but not in the controls. During the period 36 to 12 h before ovulation, granulosa and colour-Doppler end-points increased in the control and hCG groups (hour effects), while oestradiol was decreasing in both groups. The prominence and percentage of follicle circumference with an anechoic band peripheral to the granulosa and colour-Doppler signals in the follicle wall, indicating arterial blood flow, decreased during the period 4 to 1 h before ovulation (hour effects). Results indicated that the ultrasonographic changes of the wall of the preovulatory follicle were not associated temporally with changes in oestradiol concentrations and prominence of an anechoic band, and colour-Doppler signals decreased during the few hours before ovulation. The hypothesis that the latter portion of the ovulatory LH surge has a negative effect on systemic oestradiol was supported by the immediate decrease in oestradiol concentrations when hCG was injected.  相似文献   

4.
We previously established a bovine experimental model showing that the corpus luteum (CL) does not appear following aspiration of the preovulatory follicle before the onset of LH surge. Using this model, the present study aimed to determine the profile of follicular development and the endocrinological environment in the absence of CL with variable nadir circulating progesterone (P(4)) concentrations during the oestrous cycle in cattle. Luteolysis was induced in heifers and cows and they were assigned either to have the dominant follicle aspirated (CL-absent) or ovulation induced (CL-present). Ultrasound scanning to observe the diameter of each follicle and blood collection was performed from the day of follicular aspiration or ovulation and continued for 6 days. The CL-absent cattle maintained nadir circulating P(4) throughout the experimental period and showed a similar diameter between the largest and second largest follicle, resulting in co-dominant follicles. Oestradiol (E(2)) concentrations were greater in the CL-absent cows than in the CL-present cows at day -1, day 1 and day 2 from follicular deviation. The CL-absent cows had a higher basal concentration, area under the curve (AUC), pulse amplitude and pulse frequency of LH than the CL-present cows. After follicular deviation, the CL-absent cows showed a greater basal concentration, AUC and pulse amplitude of growth hormone (GH) than the CL-present cows. These results suggest that the absence of CL accompanying nadir circulating P(4) induces an enhancement of LH pulses, which involves the growth of the co-dominant follicles. Our results also suggest that circulating levels of P(4) and E(2) affect pulsatile GH secretion in cattle.  相似文献   

5.
《Journal of dairy science》2022,105(8):7023-7035
Double ovulation and twin pregnancy are undesirable traits in dairy cattle. Based on previous physiological observations, we tested the hypothesis that increased LH action [low-dose human chorionic gonadotropin (hCG)] before the expected time of diameter deviation would change circulating FSH concentrations, maximum size of the second largest (F2) and third largest (F3) follicles, and frequency of multiple ovulations in lactating dairy cows with minimal progesterone (P4) concentrations. In replicate 1, multiparous, nonbred lactating Holstein dairy cows (n = 18) had ovulation synchronized. On d 5 after ovulation, all cows had their corpus luteum regressed and were submitted to follicle (≥3 mm) aspiration 24 h later to induce emergence of a new follicular wave. Cows were then randomized to NoP4 (untreated) and NoP4+hCG (100 IU of hCG every 24 h for 4 d after follicle aspiration). Ultrasound evaluations and blood sample collections were performed every 12 h for 7 d after follicle aspiration. All cows were then treated with 200 μg of GnRH to induce ovulation. In replicate 2, cows (n = 16) were resubmitted to similar procedures (i.e., corpus luteum regression, follicle aspiration, randomization, ultrasound evaluations every 12 h, GnRH 7 d after aspiration). However, cows in replicate 2 received an intravaginal P4 device that had been previously used (~18 d). Only cows with single (n = 15) and double (n = 16) ovulations were used in the analysis. No significant differences were detected for frequency of double ovulation, follicle sizes, and FSH concentrations across replicates (NoP4 vs. LowP4 and NoP4+hCG vs. LowP4+hCG), so data were combined. Double ovulation was 40% for control cows with no hCG (CONT) and 62.5% with hCG (hCG). Double ovulation increased as the maximum size of F2 increased: <9.5 mm and 9.5–11.5 mm (7.7%) and ≥11.5 mm (94.1%). The hCG group had more cows with F2 > 11.5 (69%) than with 9.5 ≥ F2 ≤ 11.5 (25%) and F2 < 9.5 (6%). In agreement, F2 and F3 maximum size were larger in the hCG group, but FSH concentrations were lower after F1 > 8.5 mm compared with CONT. In contrast, FSH concentrations were greater before deviation (F1 closest value to 8.5 mm) in cows with double ovulations than in those with single ovulations, regardless of hCG treatment. In addition, time from aspiration to deviation was shorter in cows with double rather than single ovulation and in cows treated with hCG as a result of faster F1, F2, and F3 growth rates before diameter deviation. In conclusion, greater FSH and follicle growth before deviation seems to be a primary driver of greater frequency of double ovulation in lactating cows with low circulating P4. Moreover, the increase in follicle growth before deviation and in the maximum size of F2 during hCG treatment suggests that increased LH may also have a role in stimulating double ovulation.  相似文献   

6.
The objective of this study was to characterize the estrous cycle of cows with similar proportions of Holstein genetics, similar genetic merit for milk production traits, but with good (Fert+) or poor (Fert-) genetic merit for fertility traits. In total, 37 lactating cows were enrolled on a protocol to synchronize estrus. Nineteen Fert+ and 12 Fert- cows that successfully ovulated a dominant follicle and established a corpus luteum underwent daily transrectal ultrasonography. Blood sampling was carried out at 8-h intervals from d 0 to 6 and from d 15 to ovulation, and once daily from d 7 to 15. Blood samples were analyzed for progesterone, estradiol, follicle stimulating hormone, and luteinizing hormone. Estrus behavior was recorded using neck activity collars and mounting pads. The Fert+ cows tended to have fewer follicular waves (2.2 vs. 2.7) and had a shorter estrous cycle (21.0 vs. 25.1 d) than Fert- cows. We observed no effect of genotype on day of first-wave emergence or day of first-wave dominant follicle peak diameter, but the peak diameter of the first-wave dominant follicle tended to be larger in Fert- cows. During the first 13 d of the cycle, Fert+ cows developed a corpus luteum that was 16% larger than that in Fert- cows. Circulating progesterone concentrations were 34% greater in Fert+ than in Fert- cows (5.15 vs. 3.84ng/mL, respectively) from d 5 to 13. During the final follicular wave, the interval from preovulatory follicle emergence to ovulation and the interval from preovulatory follicle dominance to ovulation were similar in both genotypes. Maximum preovulatory follicle diameter was larger in Fert+ than Fert- cows (17.9 vs. 16.8mm, respectively); however, circulating concentrations of estradiol were not different between genotypes. A greater proportion of Fert- cows ovulated to a silent heat than Fert+ cows (22 vs. 2%, respectively). Of cows that showed behavioral estrus, Fert+ cows had 41% greater mean activity count; however, no difference was seen in mounting behavior between genotypes. These results demonstrate, for the first time, that genetic merit for fertility has pronounced effects on corpus luteum development, progesterone concentration, preovulatory follicle diameter, and behavioral estrus.  相似文献   

7.
The objective of the study was to determine if experimentally induced clinical mastitis before ovulation resulted in alterations of endocrine function, follicular growth, or ovulation. On d 8 (estrus = d 0), cows were challenged (TRT; n = 19) with Streptococcus uberis or were not challenged (control; n = 14). Forty-eight hours after induction of luteal regression on d 12, blood samples were collected to determine estradiol-17β, LH pulse frequency, and occurrence of the LH surge. Ovaries were scanned to monitor follicular growth and ovulation. Cows with clinical mastitis (n = 12) had elevated rectal temperatures, somatic cell counts, and mammary scores. Estrus and ovulation occurred in 4 of 12 clinically infected cows and in all control cows. Cows that were challenged but did not develop clinical mastitis (n = 5) displayed estrus and ovulated. Due to differences in expression of estrus, cows were further subdivided for analyses into 4 groups: control, TRT-EST (infected cows that displayed estrus; n = 4), TRT-NOEST (infected cows that did not display estrus; n = 8), and NOMAS (cows that were inoculated but did not develop mastitis; n = 4). Ovulation rate was 100% for CON, NOMAS, and TRT-EST compared with 0% for TRT-NOEST cows. Size of the ovulatory follicle (“presumed” ovulatory follicle in TRT-NOEST cows) was similar for all groups. Frequency of LH pulses was decreased in TRT-NOEST compared with CON, TRT-EST, and NO-MAS. Estradiol-17β increased over time in CON, NO-MAS, and TRT-EST cows, but did not increase in TRT-NOEST cows. Cows with clinical mastitis may exhibit estrus and ovulate normally or have disruptions in normal physiology including decreased LH pulsatility, absence of an LH surge and estrous behavior, suppressed estradiol-17β, and failure to ovulate.  相似文献   

8.
《Journal of dairy science》2023,106(6):4413-4428
This study aimed to determine the effect of circulating progesterone (P4) concentrations produced by a corpus luteum (CL) or released by an intravaginal P4 implant (IPI) on GnRH-induced LH release, ovulatory response, and subsequent CL development, after treatment with 100 μg of gonadorelin acetate (GnRH challenge). Nonlactating multiparous Holstein cows were synchronized and GnRH was used to induce ovulation (d −7). Over 4 replicates, cows that ovulated (n = 87) were randomly assigned to a 2 × 2 factorial arrangement (presence or absence of CL and insertion or not of an IPI at GnRH challenge), creating 4 groups: CL_IPI, CL_NoIPI, NoCL_IPI, and NoCL_NoIPI. On d −1.5, NoCL_IPI and NoCL_NoIPI received 2 doses of 0.53 mg of cloprostenol sodium (PGF), 24 h apart to regress CL. On d 0, cows were treated with 100 μg of GnRH and, simultaneously, cows from IPI groups received a 2-g IPI maintained for the next 14 d. Diameter of dominant follicle, ovulatory response, and subsequent CL volume were assessed by ultrasonography on d −1.5, 0, 2, 7, and 14. Blood samples were collected on d −1.5, 0, 1, 2, 3, 5, 7, and 14 for analysis of circulating P4 and at 0, 1, 2, 4, and 6 h after GnRH challenge for analysis of circulating LH. In a subset of cows (n = 34), the development of the new CL was evaluated daily, from d 5 to 14. The presence of CL at the time of GnRH challenge affected the LH peak and ovulatory response (CL: 5.3 ng/mL and 58.1%; NoCL: 13.2 ng/mL and 95.5%, respectively). However, despite producing a rapid increase in circulating P4, IPI insertion did not affect LH concentration or ovulation. Regardless of group, ovulatory response was positively correlated with LH peak and negatively correlated with circulating P4 on d 0. Moreover, new CL development and function were negatively affected by the presence of CL and by the IPI insertion. In summary, circulating P4 produced by a CL exerted a suppressive effect on GnRH-induced LH release and subsequent ovulation of a 7-d-old dominant follicle, whereas the IPI insertion at the time of GnRH had no effect on LH concentration or ovulation. Finally, elevated circulating P4, either from CL or exogenously released by the IPI, compromised the development and function of the new CL, inducing short cycles in cows without CL at the time of GnRH treatment.  相似文献   

9.
Short fertile half-lives of the male and female gametes in the female tract necessitate accurate timing of artificial insemination. We examined the possible association between extension of the estrus to ovulation (E-O) interval and alterations in concentrations of estradiol, progesterone, and the preovulatory LH surge before estrus and ovulation. High-yielding Holstein cows (n = 74 from a total of 106) were synchronized and were examined around the time of the subsequent estrus. They were observed continuously for estrual behavior. Blood samples were collected before and after estrus, and ultrasound checks for ovulation were made every 4 h. About three-quarters of the cows exhibited short (but normal) E-O intervals of 22 to 25 h (25%) or normal intervals of 25 to 30 h (47%); 17% of them displayed a long (but normal) E-O interval of 31 to 35 h, and about 10% exhibited a very long E-O interval of 35 to 50 h. Extended E-O interval comprised estrus-to-LH surge and LH surge-to-ovulation intervals that were both longer than normal. Pronounced changes in hormonal concentrations were noted before ovulation in the very long E-O interval group of cows: progesterone and estradiol concentrations were reduced, and the preovulatory LH peak surge was markedly less than in the other 3 groups. Postovulation progesterone concentrations during the midluteal phase were lesser in the very long and the long E-O interval groups compared with those in the short and normal interval groups. Season, parity, milk yield, and body condition did not affect the estrus to LH surge, LH surge to ovulation, and E-O intervals. The results indicate an association between preovulatory-reduced estradiol concentrations and a small preovulatory LH surge, on the one hand, and an extended E-O interval, on the other hand. Delayed ovulation could cause nonoptimal timing of AI, a less than normal preovulatory LH surge that may be associated with suboptimal maturation of the oocyte before ovulation, or reduced progesterone concentrations before and after ovulation. All may be factors associated with poor fertility in cows with a very long E-O interval.  相似文献   

10.
Tissue dissolution and remodelling are associated with the processes of rupture of the ovulatory follicle and formation of the corpus luteum. Matrix metalloproteinase 2 (MMP-2) belongs to a family of endopeptidases that cleave extracellular proteins; its primary substrate is the lattice network of basement membranes that support epithelial cells and endothelium. The aim of this study was to ascertain a putative regulatory role of MMP-2 relevant to the folliculo-luteal transformation in ewes. Luteal regression and the preovulatory surge of gonadotrophins were synchronized by administration of PGF(2alpha) and GnRH on days 14.0 and 15.5 of the oestrous cycle, respectively. Dominant antral follicles present during pro-oestrus consistently ovulate approximately 24 h after GnRH administration. Normal IgG or a bioactivity-neutralizing MMP-2 monoclonal antibody was injected into the antral cavity of preovulatory follicles at 8 h after GnRH administration. Jugular blood samples were obtained for serum progesterone analysis and ovaries were removed for light microscopic morphometry on day 8. A definitive ovulation stigma was evident in control ewes. The antra of ruptured follicles had largely been supplanted with luteal tissue. In contrast, the ovarian surface contiguous with follicles injected with anti-MMP-2 was smooth and undisturbed, which is indicative of a failure of ovulation. Luteinized unruptured follicles were filled with (entrapped) fluid. Corpora lutea of control animals contained numerous connective tissue projections that provided a framework for cellular migration and angiogenesis. Luteal tissues that surrounded the cavity of antibody-treated follicles lacked trabeculae and were deficient in blood vessels. Systemic venous progesterone concentrations were lower in ewes with a luteinized unruptured follicle compared with those with a corpus luteum. It is proposed that MMP-2 is a mediator of ovulation and luteal development.  相似文献   

11.
The pathophysiology underlying follicular cysts appears to be lack of an estradiol (E2)-induced GnRH/LH surge due to hypothalamic insensitivity to E2. In addition, progesterone (P4) can cause animals with follicular cysts to resume normal cyclicity and normal hypothalamic responsiveness to E2. We postulated that follicular cysts may be a pathological manifestation of a physiological state that cows, and possibly other species, go through during the normal estrous cycle but the rise in P4 following ovulation induces them back to normal hypothalamic responsiveness to E2. Based on this hypothesis, we expected that removal of the ovary containing the corpus hemorrhagicum would prevent the normal rise in P4 following ovulation and induce development of follicular cysts. Cows (n = 24) on day 7 of the estrous cycle were treated with prostaglandin F2alpha (PGF2alpha) and time of ovulation was detected by ovarian ultrasonography every 8 h. Immediately following detection of ovulation, cows were randomly but unequally assigned to have the ovary containing the corpus hemorrhagicum removed (TRT; n = 16) or the ovary opposite to the corpus hemorrhagicum removed (CON; n = 8). Cows were subsequently evaluated by daily ultrasound and blood sampling to determine follicular dynamics. Ovulation was detected at 93.7 +/- 4.5 h after PGF2alpha injection. All CON cows had a normal estrous cycle length (22.0 +/- 0.6 days) after ovariectomy (OVX). Half of the TRT cows became anovular (TRT-ANO; n = 8) after OVX with large anovular follicles developing on the ovary (maximal size, 25.4 +/- 1.4 mm; range, 20-32 mm). However, eight TRT cows ovulated (TRT-OV; n = 8) 7.3 +/- 0.6 days after OVX. Control cows had a normal P4 rise after ovulation. Removal of the newly formed corpus hemorrhagicum prevented the rise in circulating serum P4 in TRT-ANO cows throughout the 25-day experimental period. The TRT-OV cows had a delayed increase in circulating P4 but it was normal in relation to time of ovulation. Serum E2 concentrations were similar among groups (TRT-OV, TRT-ANO and CON cows) until 7 days after OVX. Serum E2 concentrations then decreased in TRT-OV and CON cows but remained elevated (>5 pg/ml) in TRT-ANO cows. Thus, the endogenous increase in circulating E2 that induces the GnRH/LH surge and estrus is sufficient to induce cows into a physiological state that resembles follicular cysts if it is not followed by increased circulating P4.  相似文献   

12.
The effects of naturally occurring subclinical chronic or clinical short-term mastitis on time of ovulation, plasma steroid and gonadotropin concentrations, and follicular and luteal dynamics were examined in 73 lactating Holstein cows. Cows were sorted by milk somatic cell count and bacteriological examination into an uninfected group (n = 22), a clinical mastitis group (n = 9; events occurring 20 ± 7 d before the study), and a subclinical chronic mastitis group (n = 42). In addition, uninfected and mastitic cows were further sorted by their estrus to ovulation (E-O) interval. About 30% of mastitic cows (mainly subclinical) manifested an extended E-O interval of 56 ± 9.2 h compared with 28 ± 0.8 h in uninfected cows and 29 ± 0.5 h in the other 70% of mastitic cows. In mastitic cows with extended E-O interval, the concentration of plasma estradiol at onset of estrus was lower than that of uninfected cows or mastitic cows that exhibited normal E-O intervals (3.1 ± 0.4, 5.8 ± 0.5, and 5.5 ± 0.5 pg/mL, respectively). The disruptive effect of mastitis on follicular estradiol probably does not involve alterations in gonadotropin secretion because any depressive effects of mastitis on pulsatile LH concentrations were not detected. Cortisol concentrations did not differ among groups. The preovulatory LH surge in mastitic cows with delayed ovulation varied among individuals, being lower, delayed, or with no surge noted compared with the normal LH surge exhibited by uninfected cows or mastitic cows with normal E-O interval (6.8 ± 0.7 ng/mL). The diameter of the second-wave dominant follicle was larger and the number of medium follicles was smaller in uninfected and subclinical cows with normal intervals compared with subclinical cows with extended intervals (13.4 ± 0.5 vs. 10.9 ± 0.9 mm, and 3.8 ± 0.2 vs. 6.7 ± 0.14 follicles, respectively). Mid-luteal progesterone concentrations were similar in uninfected and mastitic cows. These results indicate for the first time that around 30% of cows with subclinical chronic mastitis exhibit delayed ovulation that is associated with low plasma concentrations of estradiol and a low or delayed preovulatory LH surge.  相似文献   

13.
The preovulatory release of luteinizing hormone (LH) in the domestic hen occurs after the initiation of a preovulatory surge of testosterone. The objective of this study was to determine whether this testosterone surge has functional significance in the endocrine control of ovulation. Groups of laying hens (n = 10-22) were treated with the androgen receptor antagonist, flutamide, at 8 h intervals for 24 h at doses of 0, 31.25, 62.5, 125 and 250 mg. All doses reduced egg laying (P < 0.001), with the highest dose being the most effective. In a second study, laying hens (n = 9) were treated with 250 mg flutamide at 8 h intervals for 24 h with a control group being given placebo (n = 10). Blood samples were taken for hormone measurements at 2 h intervals for 18 h starting 4 h before the onset of darkness. The percentage of hens laying per day did not differ between groups before treatment (control, 88% vs flutamide, 86%). Ovulation was blocked in all hens treated with flutamide within 2 days while the control hens continued to lay at the pretreatment rate (80%). Preovulatory surges of plasma testosterone, progesterone, oestradiol and LH were observed in control hens but with the exception of testosterone, flutamide treatment blocked the progesterone, oestradiol and LH surges. LH concentrations declined progressively with time in the flutamide-treated hens. It is concluded that inhibition of testosterone action blocks egg laying and the preovulatory surges of progesterone, luteinizing hormone and oestradiol demonstrating a key role for the preovulatory release of testosterone in the endocrine control of ovulation in the domestic hen.  相似文献   

14.
Preovulatory LH and FSH surges and the subsequent periovulatory FSH surge were studied in heifers treated with a single injection of GnRH (100 microg, n = 6) or saline (n = 7). Blood samples were collected every hour from 6 h before treatment until 12 h after the largest follicle reached > or =8.5 mm (expected beginning of follicular deviation). The GnRH-induced preovulatory LH and FSH surges were higher at the peak and shorter in duration than in controls, but the area under the curve was not different between groups. The profiles of the preovulatory LH and FSH surges were similar within each treatment group, suggesting that the two surges involved a common GnRH-dependent mechanism. Concentrations of FSH in controls at the nadir before the preovulatory surge and at the beginning and end of the periovulatory surge were not significantly different among the three nadirs. A relationship between variability in the periovulatory FSH surge and number of 5.0 mm follicles was shown by lower FSH concentrations during 12-48 h after the beginning of the surge in heifers with more follicles (11.0 +/- 1.0 follicles (mean+/-s.e.m.) n = 7) than in heifers with fewer follicles (5.7 +/- 0.4, n = 6). This result was attributed to increased FSH suppression from increased numbers of follicles reaching 5.0 mm. Grouping of heifers into those with longer vs shorter intervals from a 4.5 mm to an 8.5 mm largest follicle did not disclose any relationship between length of the interval and FSH characteristics (e.g. profile of surge, area under curve, FSH concentrations at specific events). The hypothesis of a relationship between variation in the periovulatory FSH surge and variation in follicular dynamics was supported for the number of 5.0 mm follicles but not for the hour the largest follicle reached 8.5 mm. Thus, the expected time of follicle deviation was not altered by the extensive variation in the wave-stimulating FSH surge.  相似文献   

15.
16.
Two experiments examined effects of GnRH administered within 3 h after onset of estrus (OE) on ovulation and conception in dairy cows. In experiment 1, 46 cows received either saline, 250 microg of GnRH, or 10 microg of the GnRH analogue, Buserelin. Cows were observed for estrus, blood samples were collected, and ovulations were monitored by ultrasound. In controls, 76% of cows had intervals from estrus to ovulation of < or = 30 h and 24% had intervals > 30 h. Treatment with either GnRH or GnRH analogue (data combined) increased magnitude of LH surges and decreased intervals from estrus to LH surge or to ovulation. Treated cows all ovulated < or = 30 h after OE. Among control cows, plasma estradiol concentrations before estrus correlated positively with amplitudes of LH surges. Higher plasma progesterone was observed in the subsequent estrous cycle in GnRH-treated cows compared to control cows with delayed ovulations. Experiment 2 included 152 primiparous and 211 multiparous cows in summer and winter. Injection of GnRH analogue at OE increased conception rates (CR) from 41.3 to 55.5% across seasons. In summer, GnRH treatment increased CR from 35.1 to 51.6%. Across seasons, GnRH increased CR from 36.0 to 61.5% in cows with lower body condition at insemination and GnRH increased CR (63.2 vs. 42.2%) in primiparous cows compared to controls. Use of GnRH eliminated differences in CR for cows inseminated early or late relative to OE and increased CR in cows having postpartum reproductive disorders. In conclusion, GnRH at onset of estrus increased LH surges, prevented delayed ovulation, and may increase subsequent progesterone concentrations. Treatments with GnRH increased conception in primiparous cows, during summer, and in cows with lower body condition.  相似文献   

17.
Recent studies suggest that IGF-I is a crucial regulatory factor in follicular growth during early post-partum period. The aim of the present study was to determine in detail the changing profiles of metabolic and reproductive hormones in relation to ovulation of the dominant follicle (DF) of the first follicular wave post-partum in high-producing dairy cows. Plasma concentrations of related hormones in 22 multiparous Holstein cows were measured from 4 weeks pre-partum to 3 weeks post-partum, and the development of DF was observed with colour Doppler ultrasound. Thirteen cows showed ovulation by 15.2 days post-partum. Anovulatory cows showed higher GH and lower IGF-I levels than those in ovulatory cows during the peri-partum period. Each DF developed similarly, and a clear blood flow in the follicle wall was observed despite ovulation or anovulation. In addition, detailed endocrine profiles were analyzed in 9 out of the 22 cows. Five cows showed an increase in plasma oestradiol-17beta (E2) with follicular growth followed by E2 peak, LH surge and ovulation. In these cows, plasma IGF-I concentrations remained high until 10 days post-partum followed by a gradual decrease. Subsequently, the insulin level increased together with the E2 peak towards ovulation. These profiles were not observed in anovulatory cows. In conclusion, our data strongly support the concept that IGF-I and insulin represent 'metabolic signals' of the resumption of ovarian function post-partum in high-producing dairy cows. Moreover, we provide the first visual evidence that both ovulatory and anovulatory DFs of the first follicular wave post-partum are similarly supplied with active blood flow.  相似文献   

18.
Ovulation to the first GnRH injection of Ovsynch-type protocols is lower in cows with high progesterone (P4) concentrations compared with cows with low P4 concentrations, suggesting that P4 may suppress the release of LH from the anterior pituitary after GnRH treatment. The objectives of this study were to determine the effect of 1) circulating P4 concentrations at the time of GnRH treatment on GnRH-induced LH secretion in lactating dairy cows and 2) increasing the dose of GnRH from 100 to 200 μg on LH secretion in a high- and low-P4 environment. A Double-Ovsynch (Pre-Ovsynch: GnRH, PGF(2α) 7d later, GnRH 3d later, and Breeding-Ovsynch 7d later: GnRH, PGF(2α) 7d later, and GnRH 48 h later) synchronization protocol was used to create the high- and low-P4 environments. At the first GnRH injection of Breeding-Ovsynch (high P4), all cows with a corpus luteum ≥ 20 mm were randomly assigned to receive 100 or 200 μg of GnRH. At the second GnRH injection of Breeding-Ovsynch (low P4) cows were again randomized to receive 100 or 200 μg of GnRH. Blood samples were collected every 15 min from -15 to 180 min after GnRH treatment, and then hourly until 6h after GnRH treatment. As expected, mean P4 concentrations were greater for cows in the high- than the low-P4 environment. For cows receiving 100 μg of GnRH, the LH peak and area under the curve (AUC) were greater in the low- than in the high-P4 environment. Similarly, for cows receiving 200 μg of GnRH, the LH peak and AUC were greater in the low- than the high-P4 environment. Cows receiving 100 or 200 μg of GnRH had greater mean LH concentration in the low- than the high-P4 environment from 1 to 6h after GnRH treatment. On the other hand, when comparing the effect of the 2 GnRH doses in the high- and low-P4 environments, cows receiving 200 μg of GnRH had a greater LH peak and AUC than cows treated with 100 μg of GnRH both in the high- and low-P4 environments. For the high-P4 environment, mean LH was greater from 1.5 to 5h after GnRH treatment for cows receiving 200 μg of GnRH than for those receiving 100 μg of GnRH. In the low-P4 environment, mean LH was greater for cows receiving 200 μg of GnRH than for those receiving 100 μg of GnRH from 1 to 2.5h after GnRH treatment. We conclude that the P4 environment at GnRH treatment dramatically affects GnRH-induced LH secretion, and that a 200-μg dose of GnRH can increase LH secretion in either a high- or a low-P4 environment.  相似文献   

19.
《Journal of dairy science》2022,105(10):8523-8534
The objectives of this retrospective observational study were to determine the associations of anogenital distance (AGD) with (a) postpartum estrous activity, (b) diameter of the preovulatory follicle, (c) intensity of estrous expression, (d) postestrus ovulation, (e) corpus luteum (CL) size, and (f) concentrations of progesterone at estrus and on d 7 after estrus. Lactating Holstein cows (n = 178; 55 primiparous, 123 multiparous) were enrolled into the study during the first postpartum week. All cows were continuously monitored by a pedometer-based automated activity monitoring (AAM) system for estrus. Postpartum estrous activity was assessed using the AAM estrus alerts, in which cows with at least one true estrus alert (i.e., a relative increase in steps from each cow's baseline detected by the AAM and the presence of at least one follicle >15 mm, a CL <20 mm, or no CL detected by ultrasound) by the first 50 d in milk (DIM) were considered to have commenced estrous activity. At the estrus alert >60 DIM, ovulation was determined by ultrasound at 24 h, 48 h, and 7 d after estrus, and blood samples were collected at estrus alert and on d 7 after estrus for progesterone analysis. The AGD was measured from the center of the anus to the base of the clitoris and classified as either short- or long-AGD using 2 cut-points of 148 mm (predictive of the probability of pregnancy to first insemination; short-AGD, n = 115; long-AGD, n = 63) and 142 mm (the median AGD; short-AGD, n = 90; long-AGD, n = 88). Regardless of the cut-point used, early postpartum estrous activity by 50 DIM (67 vs. 54%), duration of estrus (11.6 vs. 9.7 h), and preovulatory follicle diameter (20 vs. 19 mm) were greater in short-AGD than in long-AGD cows. Increased peak of activity at estrus in short-AGD cows (354 vs. 258% mean relative increase) was affected by an interaction between AGD and parity in which multiparous long-AGD cows had lesser relative increase in activity than primiparous cows (217 vs. 386%, respectively). Mean progesterone concentration at estrus was lesser in short-AGD (0.47 vs. 0.61 ng/mL) than in long-AGD cows. The ovulatory response at 24 h did not differ, but at 48 h (91 vs. 78%) and on d 7 after estrus (97 vs. 84%) it was greater in short-AGD cows. Although CL diameter on d 7 after estrus did not differ, short-AGD cows had greater progesterone concentration 7 d after estrus than long-AGD cows (4.1 vs. 3.2 ng/mL, respectively). In conclusion, greater proportions of short-AGD cows commenced estrous activity by 50 DIM, had larger preovulatory follicles, exhibited greater duration of estrus, had reduced progesterone concentration at estrus, had greater ovulation rates and progesterone concentration 7 d after estrus compared with long-AGD cows, with no difference in CL size between AGD groups. Because all the differences in physiological characteristics of short-AGD cows reported herein favor improved reproductive outcomes, we infer that these are factors contributing to improved fertility reported in short-AGD cows compared with long-AGD cows.  相似文献   

20.
The aim of this study was to evaluate the expression pattern of fibroblast growth factor 2 (FGF2), its receptor variants (FGFR1IIIc, FGFR2IIIc) and nucleolin in time-defined follicle classes before and after GnRH application and after ovulation in the cow. Ovaries containing preovulatory follicles or new corpora lutea (CL) were collected at approximately 0, 4, 10, 20 and 25 h (follicles) and 60 h (new CL) relative to injection of GnRH to induce an LH surge (n = 5 animals per group). The expressions of FGF2 and FGFR1IIIc mRNA were significantly up-regulated only in the follicle group 4 h after GnRH (during the LH surge) with a significant down-regulation immediately afterwards. Western blot analyses showed two protein bands with at 22 and 18 kDa with apparent up-regulation beginning with the LH surge (4 h) and maximum levels 20 h after GnRH. FGF2 protein in follicles collected at 0 h (before LH surge) was localised in theca tissue (endothelial and pericytes of blood vessels) but not in granulosa cells (GCs). The FGF2 staining (by immunohistochemistry) pattern changed dramatically after the LH surge for a short period (about 2 days) and FGF2 protein was localised dominantly in the nucleus of many GCs, while most capillary endothelial cells were FGF2 immunonegative. In conclusion, the novel observation of FGF2 up-regulation and the distinct change in FGF2 localisation from theca (cytoplasm of endothelial cells) to the nucleus of GCs after the LH surge may be important for survival of GCs or for the transition of the GCs to luteal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号