首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unlike in mice, where the onset of oocyte maturation (germinal vesicle breakdown, GVBD) is blocked by cAMP and triggered by AMP-activated kinase (AMPK), oocytes of the marine nemertean worm Cerebratulus undergo GVBD in response to cAMP elevations and AMPK deactivation. Since the pathways underlying AMPK's effects on mammalian or nemertean GVBD have not been fully defined, follicle-free nemertean oocytes were treated with pharmacological modulators and subsequently analyzed via immunoblotting methods using phospho-specific antibodies to potential regulators and targets of AMPK. Based on such phosphorylation patterns, immature oocytes possessed an active LKB1-like kinase that phosphorylated AMPK's T172 site to activate AMPK, whereas during oocyte maturation, AMPK and LKB1-like activities declined. In addition, given that MAPK can deactivate AMPK in somatic cells, oocytes were treated with inhibitors of ERK1/2 MAPK activation. However, these assays indicated that T172 dephosphorylation during maturation-associated AMPK deactivation did not require MAPK and that an observed inhibition of GVBD elicited by the MAPK kinase blocker U0126 was actually due to ectopic AMPK activation rather than MAPK inactivation. Similarly, based on tests using an inhibitor of maturation-promoting factor (MPF), T172 dephosphorylation occurred upstream to, and independently of, MPF activation. Alternatively, active MPF and MAPK were necessary for fully phosphorylating a presumably inhibitory S485/491 site on AMPK. Furthermore, in assessing signals possibly linking AMPK deactivation to MPF activation, evidence was obtained for maturing oocytes upregulating target-of-rapamycin activity and downregulating the cyclin-dependent kinase inhibitor Kip1. Collectively, these findings are discussed relative to multiple pathways potentially mediating AMPK signaling during GVBD.  相似文献   

2.
The acetylation of nuclear core histone has been suggested to work as an epigenetic mark for transmitting gene expression patterns to daughter cells. Global histone deacetylations, presumably involved in the reprogramming of the gene expression, have been observed after germinal vesicle breakdown (GVBD) in a cell cycle-dependent manner during meiotic maturation of mouse and porcine oocytes, although the regulation mechanism of histone deacetylation has not been studied well. In the present study, we examined the involvement of a crucial cell-cycle-regulator, maturation-promoting factor (MPF), and a meiosis-related kinase, mitogen-activated protein kinase (MAPK), in the global histone deacetylation during porcine oocyte maturation. In order to know whether the activities of MPF and MAPK were required, or the breakdown of GV membrane was sufficient, for the global histone deacetylation observed after GVBD, we artificially destroyed the GV membrane of the porcine immature oocytes. The artificial GV destruction (AGVD) induced histone deacetylation without the activation of MPF and MAPK. This deacetylation after AGVD was not affected by an MPF inhibitor, roscovitine, or an inhibitor of protein synthesis, cycloheximide, but was completely prevented by an inhibitor of histone deactylases (HDACs), trichostatine A. HDAC1 was present in the GV of the immature oocytes and localized on chromosomes after GVBD and AGVD. These results suggest that the MPF and MAPK activities were dispensable and the breakdown of the GV membrane was sufficient for the global histone deacetylation, which was catalyzed by HDAC activity.  相似文献   

3.
Steroid hormones, such as progesterone, oestrogen, androgen and meiosis activating sterols, are secreted from cumulus cells that are stimulated by gonadotrophins during maturation of oocytes in vitro. These steroid hormones may be absorbed by mineral oil or paraffin oil; however, in vitro maturation of pig oocytes is commonly performed using medium covered by oil. In this study, high concentrations of progesterone, oestradiol and testosterone were detected in the culture medium after pig cumulus-oocyte complexes (COCs) were cultured with FSH and LH for 44 h in medium without an oil overlay. However, high concentrations of these steroid hormones were not detected in medium when COCs were cultured with the mineral oil overlay. When high concentrations of these steroid hormones were secreted by COCs, germinal vesicle breakdown (GVBD) and the activation of p34(cdc2) kinase and mitogen-activated protein (MAP) kinase in oocytes occurred earlier in comparison with oocytes cultured in medium covered with mineral oil. Moreover, a decrease in p34(cdc2) kinase activity during meiotic progression beyond metaphase I was observed in oocytes cultured in conditions under which high concentrations of steroid hormones were secreted by COCs. In addition, the rate of development to the blastocyst stage after IVF was higher in oocytes matured in medium without an oil overlay. These adverse effects of oil may be explained by absorption by the oil of cumulus-secreted steroids or by the release of toxic compounds into the medium.  相似文献   

4.
Consequences of heat stress exposure during the first 12 h of meiotic maturation differed depending on how and when bovine oocytes were activated. If heat-stressed oocytes underwent IVF at ~24 h, blastocyst development was less than for respective controls and similar to that obtained for nonheat-stressed oocytes undergoing IVF at 30 h (i.e. slightly aged). In contrast, if heat-stressed oocytes underwent chemical activation with ionomycin/6-dimethylaminopurine at 24 h, blastocyst development was not only higher than respective controls, but also equivalent to development obtained after activation of nonheat-stressed oocytes at 30 h. Developmental differences in chemically activated vs IVF-derived embryos were not related to fertilization failure or gross alterations in cytoskeletal components. Rather, ionomycin-induced calcium release and MAP kinase activity were less in heat-stressed oocytes. While underlying mechanisms are multifactorial, ability to obtain equivalent or higher development after parthenogenetic activation demonstrates that oocytes experiencing heat stress during the first 12 h of meiotic maturation have the necessary components to develop to the blastocyst stage, but fail to do so after fertilization.  相似文献   

5.
Ovarian follicles in vivo are cooler than surrounding abdominal and ovarian tissues. This study investigated whether typical follicular temperatures influence the maturation and developmental potential of pig oocytes in vitro. Oocytes were synchronised at the germinal vesicle (GV) stage and incubated at 39, 37 or 35.5 degrees C. When compared with 39 degrees C, which is often used for in vitro studies, lower temperatures delayed spontaneous progression to the metaphase I and II (MI and MII) stages of meiosis. The MII was delayed by about 12 h per degrees C. All oocytes had normal morphology. Oocytes reaching GV breakdown (GVBD) at 39 degrees C were subsequently unaffected by cooling, demonstrating thermal sensitivity during the pre-GVBD stage only. Simultaneous assay of maturation-controlling kinases (maturation promoting factor (MPF) and MAPK) showed that cooling delayed kinase activation, provided it was applied prior to GVBD. Activity profiles remained coupled to the stage of meiosis. Neither enzyme was directly thermally sensitive over this temperature range. Following in vitro fertilisation, fewer blastocysts developed from embryos derived from 35.5 or 37 degrees C oocytes as compared with those from 39 degrees C oocytes. Manipulation of fertilisation timings to allow for delayed maturation showed that over-maturing or aging at lower temperatures compromises subsequent embryo development, despite normal nuclear maturation; the GV stage was again the thermally sensitive period. Cleavage rates were improved by the culture of oocytes with follicle-stimulating hormone (FSH) at 37 but not at 35.5 degrees C. Inclusion of 20% follicular fluid in the oocyte medium restored the blastocyst rate to that seen at higher temperatures. Thus, FSH and follicular fluid may allow oocytes to achieve normal developmental potential at in vivo temperatures.  相似文献   

6.
Reinitiation of meiosis in meiotically competent, fully grown mammalian oocytes is governed by a fall in intraoocyte cAMP concentrations and the subsequent inactivation of protein kinase A (PKA). A similar reduction in intraoocyte cAMP concentrations in growing, meiotically incompetent rat oocytes not leading to resumption of meiosis, questions the involvement of PKA in the regulation of meiosis at this early stage of oocyte development. We examined the possibility of whether PKA activity maintains growing oocytes in meiotic arrest and further explored the mode of activation of PKA under conditions of relatively low cAMP concentrations. Our experiment demonstrated that inactivation of PKA stimulates growing rat oocytes to resume meiosis, and elevates the activity of their maturation-promoting factor (MPF). We also found that the expressions of type I and type II regulatory subunits (RI and RII) of PKA are higher in growing and fully grown oocytes, respectively. In addition, we revealed that the common 1:1 ratio between the regulatory (R) and catalytic (C) subunits of PKA is apparently not abrogated and, in accordance PKA activity in growing oocyte-cell extract is fully dependent on cAMP. Finally, we identified in growing oocytes, the A kinase anchoring protein (AKAP) 140, which was previously depicted in fully grown oocytes. We conclude that an active PKA prevents growing oocytes from resuming meiosis. Our findings further suggest that relatively high abundance of the PKAI isoform and/or its subcellular compartmentalization, through interaction with AKAP140, could possibly account for the high basal PKA activity at relatively low intraoocyte cAMP concentrations.  相似文献   

7.
The dynamics of cyclin B1 distribution during meiosis I in mouse oocytes   总被引:2,自引:0,他引:2  
Cdk1-cyclin B1 kinase activity drives oocytes through meiotic maturation. It is regulated by the phosphorylation status of cdk1 and by its spatial organisation. Here we used a cyclin B1-green fluorescent protein (GFP) fusion protein to examine the dynamics of cdk1-cyclin B1 distribution during meiosis I (MI) in living mouse oocytes. Microinjection of cyclin B1-GFP accelerated germinal vesicle breakdown (GVBD) and, as previously described, overrides cAMP-mediated meiotic arrest. GVBD was pre-empted by a translocation of cyclin B1-GFP from the cytoplasm to the germinal vesicle (GV). After nuclear accumulation, cyclin B1-GFP localised to the chromatin. The localisation of cyclin B1-GFP is governed by nuclear import and export. In GV intact oocytes, cyclin export was demonstrated by showing that cyclin B1-GFP injected into the GV is exported to the cytoplasm while a similar size dextran is retained. Import was revealed by the finding that cyclin B1-GFP accumulated in the GV when export was inhibited using leptomycin B. These studies show that GVBD in mouse oocytes is sensitive to cyclin B1 abundance and that the changes in distribution of cyclin B1 contribute to progression through MI.  相似文献   

8.
9.
In this study, we performed proteomic analysis of porcine oocytes during in vitro maturation. Comparison of oocytes at the initial and final stages of meiotic division characterized candidate proteins that were differentially synthesized during in vitro maturation. While the biosynthesis of many of these proteins was significantly decreased, we found four proteins with increased biosynthetic rate, which are supposed to play an essential role in meiosis. Among them, the ubiquitin C-terminal hydrolase-L1 (UCH-L1) was identified by mass spectrometry. To study the regulatory role of UCH-L1 in the process of meiosis in pig model, we used a specific inhibitor of this enzyme, marked C30, belonging to the class of isatin O-acyl oximes. When germinal vesicle (GV) stage cumulus-enclosed oocytes were treated with C30, GV breakdown was inhibited after 28 h of culture, and most of the oocytes were arrested at the first meiosis after 44 h. The block of metaphase I-anaphase transition was not completely reversible. In addition, the inhibition of UCH-L1 resulted in elevated histone H1 kinase activity, corresponding to cyclin-dependent kinase(CDK1)-cyclin B1 complex, and a low level of monoubiquitin. These results supported the hypothesis that UCH-L1 might play a role in metaphase I-anaphase transition by regulating ubiquitin-dependent proteasome mechanisms. In summary, a proteomic approach coupled with protein verification study revealed an essential role of UCH-L1 in the completion of the first meiosis and its transition to anaphase.  相似文献   

10.
11.
Angiotensin II (AngII) prevents the inhibitory effect of follicular cells on oocyte maturation, but its involvement in LH-induced meiotic resumption remains unknown. The aim of this study was to assess the involvement of AngII in LH-induced meiotic resumption and of prostaglandins (PGs) in the action of AngII. In the experiment I, seven cows were superovulated, intrafollicularly injected with 10 muM saralasin (a competitive AngII antagonist) or saline when the follicles reached a diameter larger than 12 mm, and challenged with a GnRH agonist to induce an LH surge. Fifteen hours after GnRH, the animals were ovariectomized and the oocytes were recovered to determine the stage of meiosis. The oocytes from follicles that received saline were in germinal vesicle (GV) breakdown (30.8%) or metaphase I (MI; 69.2%) stage while those that received saralasin were in the GV stage (100%; P<0.001) 15 h after GnRH agonist. In another experiment, oocytes were co-cultured with follicular hemisections for 15 h to determine whether PGs mediate the effect of AngII on meiotic resumption. Indomethacin (10 microM) inhibited AngII-induced meiotic resumption (13.4 vs 77.5% MI without indomethacin; P<0.001). Furthermore, the GV oocytes progressed to MI at a similar rate when PGE(2), PGF(2alpha) or AngII was present in the co-culture system with follicular cells (PGE(2) 77.4%, PGF(2alpha) 70.0%, and AngII 75.0% MI). In conclusion, our results provide strong evidence that AngII mediates the resumption of meiosis induced by an LH surge in bovine oocytes and that this event is dependent on PGE(2) or PGF(2alpha) produced by follicular cells.  相似文献   

12.
In mammalian oocytes, cAMP elevations prevent the resumption of meiotic maturation and thereby block nuclear disassembly (germinal vesicle breakdown (GVBD)), whereas nitric oxide (NO) and its downstream mediator cGMP can either inhibit or induce GVBD. Alternatively, some invertebrate oocytes use cAMP to stimulate, rather than inhibit, GVBD, and in such cases, the effects of NO/cGMP signaling on GVBD remain unknown. Moreover, potential interactions between NO/cGMP and AMP-activated kinase (AMPK) have not been assessed during GVBD. Thus, this study analyzed intraoocytic signaling pathways related to NO/cGMP in a marine nemertean worm that uses cAMP to induce GVBD. For such tests, follicle-free nemertean oocytes were stimulated to mature by seawater (SW) and cAMP elevators. Based on immunoblots and NO assays of maturing oocytes, SW triggered AMPK deactivation, NO synthase (NOS) phosphorylation, and an NO elevation. Accordingly, SW-induced GVBD was blocked by treatments involving the AMPK agonist AICAR, antioxidants, the NO scavenger carboxy-PTIO, NOS inhibitors, and cGMP antagonists that target the NO-stimulated enzyme, soluble guanylate cyclase (sGC). Conversely, SW solutions combining NO/cGMP antagonists with a cAMP elevator restored GVBD. Similarly, AICAR plus a cAMP-elevating drug reestablished GVBD while deactivating AMPK and phosphorylating NOS. Furthermore, sGC stimulators and 8-Br-cGMP triggered GVBD. Such novel results indicate that NO/cGMP signaling can upregulate SW-induced GVBD and that cAMP-elevating drugs restore GVBD by overriding the inhibition of various NO/cGMP downregulators, including AMPK. Moreover, considering the opposite effects of intraoocytic cAMP in nemerteans vs mammals, these data coincide with previous reports that NO/cGMP signaling blocks GVBD in rats.  相似文献   

13.
In somatic cells, the serine/threonine kinase Akt (or protein kinase B) was shown to contribute to processes linked to cellular growth, cell survival and cell cycle regulation. In contrast to these findings, the function of Akt during the meiosis of mammalian oocytes remains to be investigated. We analysed the phosphorylation pattern and the activity of Akt during meiotic maturation (transition from prophase I to metaphase II) of bovine oocytes. The oocytes were matured in vitro (IVM) for 0, 10 and 24 h to reach the germinal vesicle (GV), metaphase I (M I) and metaphase II (M II) stages respectively. The abundance and phosphorylation pattern of Akt was revealed by Western blotting using total Akt or phosphoso-Akt-specific antibodies. The activity of this particular kinase was determined by an in vitro kinase assay. Furthermore, functional properties were analysed by cultivating oocytes in the presence of the Akt inhibitor SH6. The results showed that the overall abundance of Akt did not change significantly during IVM. On the other hand, Akt became phosphorylated at Thr 308 and Ser 473, reaching its maximum at the M I phase. In the GV and M II stages, only low basal phosphorylation levels were observed on both sides. This phosphorylation profile corresponded strictly to the activity of the kinase. The cultivation of oocytes in the presence of the phosphatidylinositol analogue SH6 for 24 h showed that, with higher concentrations, up to 65% of the oocytes were arrested in the M I stage. This result indicated that Akt is involved in the M I/M II transition during the meiotic maturation of bovine oocytes. The physiological aspects of the Akt function will be discussed.  相似文献   

14.
The spindle checkpoint ensures accurate chromosome segregation by delaying anaphase until all chromosomes are correctly aligned on the microtubule spindle. Although this mechanism is conserved throughout eukaryotic evolution, it is unclear whether it operates during meiosis in female mammals. The results of the present study show that in mouse oocytes spindle alterations prevent both chromosome segregation and MPF (M phase promoting factor) inactivation during the first meiotic M phase. Moreover, the spindle checkpoint component budding uninhibited by benzimidazole 1 (BUB1) localizes to kinetochores and is phosphorylated until anaphase of both meiotic M phases. Both localization and phosphorylation are similar to those observed in oocytes at microtubule depolymerization. In addition, the kinetochore localization and phosphorylation of BUB1 do not depend on the MOS/.../MAPK pathway. These data indicate that the spindle checkpoint is probably active during meiotic maturation in mouse oocytes. BUB1 remains associated with kinetochores and is phosphorylated during the metaphase arrest of the second meiotic M phase, indicating that this protein may also play a role in the natural metaphase II arrest in mammalian oocytes.  相似文献   

15.
The mechanism for the accelerating effects of epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) on the meiotic cell cycle of bovine oocytes cultured in vitro was investigated. Cumulus-oocyte complexes (COCs) were obtained from small (< or = 3 mm in diameter), medium (4-6 mm in diameter) or large (7-10 mm in diameter) ovarian follicles and cultured with or without a combination of EGF and IGF-I (growth factors). Growth factors significantly increased the frequency of first polar body extrusion of oocytes derived from small follicles at 16 h of culture (PB16 oocytes; with growth factors: 75%; without growth factors: 55%), but did not increase the frequency in oocytes from medium or large follicles. COCs from small follicles were cultured with individual growth factors and sampled for kinase activity. The frequencies of polar body extrusion in EGF only (67%) and EGF + IGF-I (75%) treatment groups were significantly higher than those in the control (no growth factor) group (49%), but not significantly higher than in the IGF-I only group (63%). The H1 kinase activity at 6-8 h of culture in each group increased significantly from the baseline value at 0 h of culture, and the H1 kinase activities in the EGF only, IGF-I only and EGF + IGF-I treatment groups were significantly higher than those in the control group at 8 h of culture. MAP kinase activity was significantly higher than the baseline value and significantly higher than that in the control group at 6 h of culture in the EGF treatment group only. In conclusion, EGF and IGF-I act on COCs from small follicles to accelerate the meiotic cell cycle of the oocytes. This accelerating effect may be related to increased H1 and MAP kinase activities during the early stages of maturation.  相似文献   

16.
Mammalian oocytes are arrested at prophase I of meiosis until a preovulatory surge of LH stimulates them to resume meiosis. Prior to the LH surge, high levels of cAMP within the oocyte maintain meiotic arrest; this cAMP is generated in the oocyte through the activity of the constitutively active, G(s)-coupled receptor, G-protein-coupled receptor 3 (GPR3) or GPR12. Activated GPRs are typically targeted for desensitization through receptor-mediated endocytosis, but a continuously high level of cAMP is needed for meiotic arrest. The aim of this study was to examine whether receptor-mediated endocytosis occurs in the mouse oocyte and whether this could affect the maintenance of meiotic arrest. We found that constitutive endocytosis occurs in the mouse oocyte. Inhibitors of receptor-mediated endocytosis, monodansylcadaverine and dynasore, inhibited the formation of early endosomes and completely inhibited spontaneous meiotic resumption. A red fluorescent protein-tagged GPR3 localized in the plasma membrane and within early endosomes in the oocyte, demonstrating that GPR3 is endocytosed. However, overexpression of G-protein receptor kinase 2 and β-arrestin-2 had only a modest effect on stimulating meiotic resumption, suggesting that these proteins do not play a major role in GPR3 endocytosis. Inhibition of endocytosis elevated cAMP levels within oocytes, suggesting that there is an accumulation of GPR3 at the plasma membrane. These results show that endocytosis occurs in the oocyte, leading to a decrease in cAMP production, and suggest that there is a balance between cAMP production and degradation in the arrested oocyte that maintains cAMP levels at an appropriate level during the maintenance of meiotic arrest.  相似文献   

17.
With the aim of investigating the effects of oocyte genotype and activating stimulus on the timing of nuclear events after activation, oocytes collected from hybrid B6D2F1, inbred C57BL/6 and outbred CF-1 and immunodeficient nude (NU/+) females were activated using ethanol or strontium and fixed at various time-points. Meiotic status, spindle rotation and second polar body (PB2) extrusion were monitored by fluorescence microscopy using DNA-, microtubule- and microfilament-selective probes. Although activation efficiency was similar in all groups of oocytes, a significant percentage of CF-1 and NU/+ oocytes treated with ethanol and of C57BL/6 oocytes treated either with ethanol or strontium failed to complete activation and became arrested at a new metaphase stage (MIII) after PB2 extrusion. C57BL/6 oocytes also showed slower release from MII arrest but faster progression to telophase (TII) after ethanol exposure, and they exhibited the most rapid exit from TII under both activation treatments. Strontium caused delayed meiotic resumption, spindle rotation and PB2 extrusion, but rapid TII exit, in B6D2F1, CF-1 and NU/+ oocytes when compared with ethanol. Compared with all other strains, NU/+ oocytes were significantly slower in completing spindle rotation and PB2 extrusion, irrespective of the activating stimulus, and a significant decrease in activation rates and pace of meiotic progression was observed after strontium exposure. Thus, our findings demonstrated that the kinetics of meiosis resumption and completion, spindle rotation and PB2 extrusion following parthenogenetic activation depends on both genotype-specific factors and on the activation treatment applied.  相似文献   

18.
Mammalian oocytes grow and undergo meiosis within ovarian follicles. Oocytes are arrested at the first meiotic prophase, held in meiotic arrest by the surrounding follicle cells until a surge of LH from the pituitary stimulates the immature oocyte to resume meiosis. Meiotic arrest depends on a high level of cAMP within the oocyte. This cAMP is generated by the oocyte, through the stimulation of the G(s) G-protein by the G-protein-coupled receptor, GPR3. Stimulation of meiotic maturation by LH occurs via its action on the surrounding somatic cells rather than on the oocyte itself. LH induces the expression of epidermal growth factor-like proteins in the mural granulosa cells that act on the cumulus cells to trigger oocyte maturation. The signaling pathway between the cumulus cells and the oocyte, however, remains unknown. This review focuses on recent studies highlighting the importance of the oocyte in producing cAMP to maintain arrest, and discusses possible targets at the level of the oocyte on which LH could act to stimulate meiotic resumption.  相似文献   

19.
For successful fertilization by the male gamete, oocyte cytoplasmic organelles such as the Golgi apparatus have to undergo specific changes: the entire process is known as cytoplasmic maturation. The goal of this study was to unravel the dynamics of the Golgi apparatus in bovine oocytes at critical stages of in vitro maturation, i.e. germinal vesicle (GV), GV breakdown (GVBD), metaphase I (MI) and metaphase II, and to investigate the role of various molecules critically involved therein. The cytoplasmic distribution of proteins was assessed by immunocytochemistry and laser confocal microscopy. We applied specific inhibitors, including nocodazole to unravel the functional role of the microtubular elements; sodium orthovanadate, which primarily inhibits cytoplasmic dynein ATPase activity; monastrol which inhibits the kinesin EG5; and roscovitine to inhibit the kinase cyclin-dependent kinase 2A (CDC2A). Prior to GVBD, the Golgi apparatus was translocated from the centre of the cytoplasm to the cortical area in the periphery, where it underwent fragmentation. A second translocation was observed between GVBD and MI stages, when the Golgi apparatus was moved from the cortex to the centre of the cytoplasm. Incubation with the specific inhibitors revealed that microtubules played an active role in the final localization at GVBD, while CDC2A was essential for Golgi fragmentation at GVBD stage. This partitioning was a precondition for the second movement. In conclusion, for the first time we show basic mechanisms critically involved in the regulation of the dynamic changes of Golgi apparatus during meiosis of the bovine oocyte.  相似文献   

20.
Various types of cell cycle organization occur in mammals. In this study, centrosome changes during meiosis in horse oocytes, and first cell cycle organization following fertilization, parthenogenesis and nuclear transfer, were monitored. Cumulus oocyte complexes harvested from horse ovaries obtained from slaughtered mares were cultured in vitro. Meiotic oocytes of germinal vesicle (GV), germinal vesicle breakdown (GVBD), metaphase I and II (MI and MII) stages were selected at various set times during in vitro maturation. Embryos at the first cell cycle stage were generated by subjecting MII stage oocytes to fertilization by intracytoplasmic sperm injection (ICSI), parthenogenetic treatment or nuclear transfer. Centrosome changes during meiosis and the first cell cycle organization were detected by indirect immunofluorescent staining, using a mouse anti-alpha-tubulin antibody for microtubules and a rabbit anti-gamma-tubulin antibody for centrosomes. These examinations showed that the centrosomes of the horse oocyte reorganize themselves from the beginning of GV stage to leave only PCM of gamma-tubulin surrounding both poles of the MI and MII stage spindles. These MII oocytes can organize the separation of metaphase chromosomes during the first embryonic cell cycle by parthenogenetic treatment. When the MII oocytes were subjected to ICSI or nuclear transfer, one or two red-stained centrosomes of gamma-tubulin were introduced by the fertilising spermatozoon or the donor cell which associated with the sperm chromatin in the fertilized embryos and with the donor cell chromatin and microtubules in the cloned embryos. This finding suggests that centrosomes are not an essential component in the formation of the metaphase spindle during meiotic maturation of horse oocytes, but they can be introduced from the spermatozoon or donor cell and are necessary for the organization of normal embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号