首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zhou L  Ou LJ  Chu X  Shen GL  Yu RQ 《Analytical chemistry》2007,79(19):7492-7500
Aptamer-based rolling circle amplification (aptamer-RCA) was developed as a novel versatile electrochemical platform for ultrasensitive detection of protein. This method utilized antibodies immobilized on the electrode surface to capture the protein target, and the surface-captured protein was then sandwiched by an aptamer-primer complex. The aptamer-primer sequence mediated an in situ RCA reaction that generated hundreds of copies of a circular DNA template. Detection of the amplified copies via enzymatic silver deposition then allowed enormous sensitivity enhancement in the assay of target protein. This novel aptamer-primer design circumvented time-consuming preparation of the antibody-DNA conjugate for the common immuno-RCA assay. Moreover, the detection strategy based on enzymatic silver deposition enabled a highly efficient readout of the RCA product as compared to a redox-labeled probe based procedure that might exhibit low detection efficiency due to RCA product distance from the electrode. With the platelet-derived growth factor B-chain (PDGF-BB) as a model target, it was demonstrated that the presented method was highly sensitive and specific with a wide detection range of 4 orders of magnitude and a detection limit as low as 10 fM. Because of the wide availability of aptamers for numerous proteins, this platform holds great promise in ultrasensitive immunoassay.  相似文献   

2.
Zhang J  Qi H  Li Y  Yang J  Gao Q  Zhang C 《Analytical chemistry》2008,80(8):2888-2894
A highly selective electrogenerated chemiluminescence (ECL) biosensor for the detection of target single-strand DNA (ss-DNA) was developed using hairpin DNA as the recognition element and ruthenium complex as the signal-producing compound. The ECL-based DNA biosensor was fabricated by self-assembling the ECL probe of thiolated hairpin DNA tagged with ruthenium complex on the surface of a gold electrode. In the absence of target ss-DNA, the ECL probe immobilized on the surface of the electrode was in the folded configuration in which its termini were held in close proximity to the electrode, and thus a strong ECL signal could be generated. In the presence of target ss-DNA, a stem-loop of the ECL probe on the electrode was converted into a linear double-helix configuration due to hybridization, resulting in the tag moving away from the electrode surface, which in turn decreased the ECL signal. The ECL intensity of the DNA biosensor generated a "switch off" mode, which decreased with an increase of the concentration of target DNA, and a detection limit of 9 x 10(-11) M complementary target ss-DNA was achieved. Single mismatched target ss-DNA was effectively discriminated from complementary target ss-DNA. The effect of different loop lengths of the hairpin DNA on the selectivity of the ECL DNA biosensor has been investigated. This work demonstrated that the sensitivity and specificity of an ECL DNA biosensor could be greatly improved using a hairpin DNA species which has an appropriate stem and loop length as the recognition element.  相似文献   

3.
Lee HJ  Li Y  Wark AW  Corn RM 《Analytical chemistry》2005,77(16):5096-5100
This paper describes a novel approach utilizing the enzyme exonuclease III in conjunction with 3'-terminated DNA microarrays for the amplified detection of single-stranded DNA (ssDNA) with surface plasmon resonance (SPR) imaging. When ExoIII and target DNA are simultaneously introduced to a 3'-terminated ssDNA microarray, hybridization adsorption of the target ssDNA leads to the direction-dependent ExoIII hydrolysis of probe ssDNA strands and the release of the intact target ssDNA back into the solution. Readsorption of the target ssDNA to another probe creates a repeated hydrolysis process that results over time in a significant negative change in SPR imaging signal. Experiments are presented that demonstrate the direction-dependent surface enzyme reaction of ExoIII with double-stranded DNA as well as this new enzymatically amplified SPR imaging process with a 16-mer target ssDNA detection limit of 10-100 pM. This is a 10(2)-10(3) improvement on previously reported measurements of SPR imaging detection of ssDNA based solely on hybridization adsorption without enzymatic amplification.  相似文献   

4.
A novel electrochemical genesensor using twice hybridization enhancement of gold nanoparticles based on carbon paste modified electrode is described. The carbon nanotube modified carbon paste electrode (CNTPE) and mesoporous molecular sieve SBA-15 modified carbon paste electrode (MSCPE) were investigated. The assay relies on the immobilization of streptavidin-biotin labeled target oligonucleotides onto the electrode surface and its hybridization to the gold nanoparticle-labeled DNA probe. After twice hybridization enhanced connection of gold nanoparticles to the hybridized system, the differential pulse voltammetry (DPV) signal of total gold nanoparticles was monitored. It was found that the adsorption of oligonucleotide and hybridized DPV signal on CNTPE were both enhanced in comparison with that of pure carbon paste electrode (CPE). But this trend was reverse on MSCPE. The DPV detection of twice hybridized gold nanoparticles indicated that the sensitivity of the genesensor enhanced about one order of magnitude compared with one-layer hybridization. One-base mismatched DNA and complementary DNA could be distinguished clearly. However, no distinct advantage of MSCPE over CPE was found.  相似文献   

5.
Yang K  Zhang CY 《Analytical chemistry》2010,82(22):9500-9505
Despite their promising applications in the biomedical research, the development of electrochemical biosensors with improved sensitivity and low detection limit has remained a great challenge. Here, we demonstrate a new approach to improve the sensitivity of the electrochemical biosensor by simply introducing an adjunct probe into its construction. This signal-on biosensor consists of a thiol-functionalized capture probe attached on the gold electrode surface, an electrochemical sign (methyl blue, MB)-modified reporter probe which is complementary to the capture probe, and an adjunct probe attached nearby the capture probe. The adjunct probe functions as a fixer to immobilize the element of reporter probe which is displaced by the target DNA and protein, increasing the chance of the dissociative reporter probe to collide with the electrode surface and facilitating the electron transfer. The biosensor with an adjunct probe exhibits improved sensitivity and a large dynamic range for DNA and the thrombin assay and can even distinguish 1-base mismatched target DNA. Importantly, the use of this biosensor is not limited to such and is viable for sensitive detection of numerous biomolecules, including RNA, proteins, and small molecules such as cocaine.  相似文献   

6.
W Li  P Wu  H Zhang  C Cai 《Analytical chemistry》2012,84(17):7583-7590
Site-specific identification of DNA methylation and assay of MTase activity are important in determining specific cancer types, providing insights into the mechanism of gene repression, and developing novel drugs to treat methylation-related diseases. This work reports an electrochemical method for gene-specific methylation detection and MTase activity assay using HpaII endonuclease to improve selectivity and employing signal amplification of graphene oxide (GO) to enhance the assay sensitivity. The method was developed by designing a probe DNA, which was immobilized on electrode surface, to hybridize with target DNA (one 137 mer DNA from exon 8 promoter region of the Homo sapiens p53 gene, was extracted from HCT116 cells). The assay is based on the electrochemical responses of the reporter (thionine), which was conjugated to 3'-terminus of the probe DNA via GO, after the DNA hybrid was methylated (under catalysis of M.SssI MTase) and cleaved by HpaII endonuclease (a site-specific endonuclease recognizing the duplex symmetrical sequence of 5'-CCGG-3' and catalyzing cleavage between the cytosines). This model can determine DNA methylation at the site of CpG and has an ability to discriminate the target DNA sequence from even single-base mismatched sequence. The electrochemical signal has a linear relationship with M.SssI activities ranging from 0.1 to 450 U/mL with a detection limit of ~(0.05 ± 0.02) U/mL at a signal/noise of 3. The advantages of this assay are ease of performance having a good specificity and selectivity. In addition, we also demonstrate the method can be used for rapid evaluation and screening of the inhibitors of MTase and has a potential application in discovery of new anticancer drugs.  相似文献   

7.
We describe a method for creating a mediator-containing interface between an enzyme and an electrode, achieving simpler and more reliable immobilization of the enzyme with the enhanced detection sensitivity. A nanothin polymer film containing a redox mediator, made of dimethylaminomethylferrocene, was plasma-deposited directly onto a glucose oxidase-physisorbed electrode, with which a relevant bioelectrochemical signal was observed without prior or further chemical modification of the enzyme molecules. The results of the surface characterizations before and after the enzyme immobilization showed that this method gave control over the spatial orientation of single enzyme molecules in favor of efficient and reproducible signal generation. Considering that the film deposition was performed using microfabrication-compatible organic plasma, our new method has a great potential of enabling high-throughput production of bioelectronic devices without chemical modification steps.  相似文献   

8.
An electrochemical DNA detection method has been developed for the sensitive quantification of an amplified 406-base pair human cytomegalovirus DNA sequence (HCMV DNA). The assay relies on (i) the hybridization of the single-stranded target HCMV DNA with an oligonucleotide-modified Au nanoparticle probe, (ii) followed by the release of the gold metal atoms anchored on the hybrids by oxidative metal dissolution, and (iii) the indirect determination of the solubilized AuIII ions by anodic stripping voltammetry at a sandwich-type screen-printed microband electrode (SPMBE). Due to the enhancement of the AuIII mass transfer by nonlinear diffusion during the electrodeposition time, the SPMBE allows the sensitive determination of AuIII in a small volume of quiescent solution. The combination of the sensitive AuIII determination at a SPMBE with the large number of AuIII released from each gold nanoparticle probe allows detection of as low as 5 pM amplified HCMV DNA fragment.  相似文献   

9.
Kim E  Kim K  Yang H  Kim YT  Kwak J 《Analytical chemistry》2003,75(21):5665-5672
We have developed a sandwich-type enzyme-linked DNA sensor as a new electrochemical method to detect DNA hybridization. A partially ferrocenyl-tethered poly(amidoamine) dendrimer (Fc-D) was used as an electrocatalyst to enhance the electronic signals of DNA detection as well as a building block to immobilize capture probes. Fc-D was immobilized on a carboxylic acid-terminated self-assembled monolayer (SAM) by covalent coupling of unreacted amine in Fc-D to the acid. Thiolated capture probe was attached to the remaining amine groups of Fc-D on the SAM via a bifunctional linker. The target DNA was hybridized with the capture probe, and an extension in the DNA of the target was then hybridized with a biotinylated detection probe. Avidin-conjugated alkaline phosphatase was bound to the detection probe and allowed to generate the electroactive label, p-aminophenol, from p-aminophenyl phosphate enzymatically. p-Aminophenol diffuses into the Fc-D layer and is then electrocatalytically oxidized by the electronic mediation of the immobilized Fc-D, which leads to a great enhancement in signal. Consequently, the amount of hybridized target can be estimated using the intensity of electrocatalytic current. This DNA sensor exhibits a detection limit of 20 fmol. Our method was also successfully applied to the sequence-selective discrimination between perfectly matched and single-base mismatched target oligonucleotides.  相似文献   

10.
Zhang S  Zhong H  Ding C 《Analytical chemistry》2008,80(19):7206-7212
A novel and sensitive flow injection chemiluminescence assay for sequence-specific DNA detection based on signal amplification with nanoparticles (NPs) is reported in the present work. The "sandwich-type" DNA biosensor was fabricated with the thiol-functionalized capture DNA first immobilized on an Au electrode and hybridized with one end of target DNA, the other end of which was recognized with a signal DNA probe labeled with CuS NPs and Au NPs on the 3'- and 5'-terminus, respectively. The hybridization events were monitored by the CL intensity of luminol-H2O2-Cu(2+) after the cupric ions were dissolved from the hybrids. We demonstrated that the incorporation of Au NPs in this sensor design significantly enhanced the sensitivity and the selectivity because a single Au NP can be loaded with hundreds of signal DNA probe strands, which were modified with CuS NPs. The ratios of Au NPs, signal DNA probes, and CuS NPs modified on the gold electrode were approximately 1/101/103. A preconcentration process of cupric ions performed by anodic stripping voltammetry technology further increased the sensor performance. As a result of these two combined effects, this DNA sensor could detect as low as femtomolar target DNA and exhibited excellent selectivity against two-base mismatched DNA. Under the optimum conditions, the CL intensity was increased with the increase of the concentration of target DNA in the range of 2.0 x 10(-14)-2.0 x 10(-12) M. A detection limit of 4.8 x 10(-15) M target DNA was achieved.  相似文献   

11.
Xuan F  Luo X  Hsing IM 《Analytical chemistry》2012,84(12):5216-5220
Taking advantage of the preferential exodeoxyribonuclease activity of exonuclease III in combination with the difference in diffusivity between an oligonucleotide and a mononucleotide toward a negatively charged ITO electrode, a highly sensitive and selective electrochemical molecular beacon (eMB)-based DNA sensor has been developed. This sensor realizes electrochemical detection of DNA in a homogeneous solution, with sensing signals amplified by an exonuclease III-based target recycling strategy. A hairpin-shaped oligonucleotide containing the target DNA recognition sequence, with a methylene blue tag close to the 3' terminus, is designed as the signaling probe. Hybridization with the target DNA transforms the probe's exonuclease III-inactive protruding 3' terminus into an exonuclease III-active blunt end, triggering the digestion of the probe into mononucleotides including a methylene blue-labeled electro-active mononucleotide (eNT). The released eNT, due to its less negative charge and small size, diffuses easily to the negative ITO electrode, resulting in an increased electrochemical signal. Meanwhile, the intact target DNA returns freely to the solution and hybridizes with other probes, releasing multiple eNTs and thereby further amplifies the electrochemical signal. This new immobilization-free, signal-amplified electrochemical DNA detection strategy shows great potential to be integrated in portable and cost-effective DNA sensing devices.  相似文献   

12.
Xue L  Zhou X  Xing D 《Analytical chemistry》2012,84(8):3507-3513
Specific and sensitive detection of proteins in biotechnological applications and medical diagnostics is one of the most important goals for the scientific community. In this study, a new protein assay is developed on the basis of hairpin probe and nicking enzyme assisted signal amplification strategy. The metastable state hairpin probe with short loop and long stem is designed to contain a protein aptamer for target recognition. A short Black Hole Quencher (BHQ)-quenching fluorescence DNA probe (BQF probe) carrying the recognition sequence and cleavage site for the nicking enzyme is employed for fluorescence detection. Introduction of target protein into the assay leads to the formation change of hairpin probe from hairpin shape to open form, thus faciliating the hybridization between the hairpin probe and BQF probe. The fluorescence signal is amplified through continuous enzyme cleavage. Thrombin is used as model analyte in the current proof-of-concept experiments. This method can detect thrombin specifically with a detection limit as low as 100 pM. Additionally, the proposed protein detection strategy can achieve separation-free measurement, thus eliminating the washing steps. Moreover, it is potentially universal because hairpin probe can be easily designed for other proteins by changing the corresponding aptamer sequence.  相似文献   

13.
A ready-to-spot disposable DNA chip for specific and sensitive detection of DNA was developed. Plastic copolymeric substrate chemistry was optimized to selectively couple the target DNA with the active chip surface. At the same time, the developed substrate limits the unspecific adsorption of probe DNA molecules or additional polar contaminants in the test samples to the chip surface. The combination of glycidyl and n-butyl methacrylates was found to best fit the requirements of the assay. The fabricated DNA microarrays have mechanical properties similar to those of the glass or silicon substrates and, at the same time, provide chemically reactive surfaces that do not require lengthy chemical modification. An additional advantage of the plastic microchip is its compatibility with different analytical readout techniques, such as mass spectrometry (MALDI-TOF/MS), optical detection (fluorescence and enzyme-induced metal deposition), and imaging techniques (atomic force microscopy). These multiple readout techniques have given us the ability to compare the sensitivity, selectivity, and robustness of current state-of-the-art bioanalytical methods on the same platform exemplified by successful DNA-based detection of human cytomegalovirus. The obtained sensitivity for enzymatically enhanced silver deposition (10(-15) M) surpasses that of conventional fluorescence readouts. In addition, the assay's dynamic range (10(-6)-10(-15) M), reproducibility, and reliability of the DNA probe detection speaks for the silver deposition method. At compromised sensitivity (10(-9) M), the length of the DNA probes could be checked and, alternatively, DNA single point polymorphisms could be analyzed.  相似文献   

14.
A novel electrochemical strategy that uses DNA-wrapped carbon nanotubes (CNTs) as electrochemical labels is developed for sensitive and selective detection of sequence-specific DNA. The presence of target DNA mediates the formation of a sandwiched complex between the DNA-wrapped CNT and a hairpin DNA capture probe immobilized on magnetic beads. This allows target-selective collection of the CNT labels by magnetic separation and transfer on the electrode surface modified with an insulating self-assembled monolayer (SAM). After treatment with N,N-dimethylformamide, the collected sandwiched complex releases the bare CNTs and facilitates the removal of magnetic beads from the electrode surface. The bare CNTs can then assemble on the SAM-modified electrode surface and mediate efficient electron transfer between the electrode and the electroactive species in the solution with a strong current signal generated. The results indicate that the developed strategy shows a sensitive response to target DNA with a desirable signal gain and a low detection limit of 0.9 pM. This strategy is also demonstrated to provide excellent differentiation of single-base mismatch in target DNA. It is expected that this electrochemical strategy may hold great potential as a novel platform for clinical diagnostics and genetic analysis.  相似文献   

15.
Luo X  Lee TM  Hsing IM 《Analytical chemistry》2008,80(19):7341-7346
An electrochemical method for sequence-specific detection of DNA without solid-phase probe immobilization is reported. This detection scheme starts with a solution-phase hybridization of ferrocene-labeled peptide nucleic acid (Fc-PNA) and its complementary DNA (cDNA) sequence, followed by the electrochemical transduction of Fc-PNA-DNA hybrid on indium tin oxide (ITO)-based substrates. On the bare ITO electrode, the negatively charged Fc-PNA-DNA hybrid exhibits a much reduced electrochemical signal than that of the neutral-charge Fc-PNA. This is attributed to the electrostatic repulsion between the negatively charged ITO surface and the negatively charged DNA, hindering the access of Fc-PNA-DNA to the electrode. On the contrary, when the transduction measurement is done on the ITO electrode coated with a positively charged poly(allylamine hydrochloride) (PAH) layer, the electrostatic attraction between the (+) PAH surface and the (-) Fc-PNA-DNA hybrid leads to a much higher electrochemical signal than that of the Fc-PNA. The measured electrochemical signal is proportional to the amount of cDNA present. In terms of detection sensitivity, the PAH-modified ITO platform was found to be more sensitive (with a detection limit of 40 fmol) than the bare ITO counterpart (with a detection limit of 500 fmol). At elevated temperatures, this method was able to distinguish fully matched target DNA from DNA with partial mismatches. Unpurified PCR amplicons were detected using a similar format with a detection limit down to 4.17 amol. This detection method holds great promise for single-base mismatch detection as well as electrochemistry-based detection of post-PCR products.  相似文献   

16.
17.
Cao Y  Zhu S  Yu J  Zhu X  Yin Y  Li G 《Analytical chemistry》2012,84(10):4314-4320
Based on small molecule-linked DNA and the nicking endonuclease-assisted amplification (NEA) strategy, a novel electrochemical method for protein detection is proposed in this work. Specifically, the small molecule-linked DNA (probe 1) can be protected from exonuclease-catalyzed digestion upon binding to the protein target of the small molecule, so the DNA strand may hybridize with another DNA strand (probe 2) that is previously immobilized onto an electrode surface. Consequently, the NEA process is triggered, resulting in continuous removal of the DNA strands from the electrode surface, and the blocking effect against the electrochemical species [Fe(CN)(6)](3-/4-) becomes increasingly lower; thus, increased electrochemical waves can be achieved. Because the whole process is activated by the target protein, an electrochemical method for protein quantification is developed. Taking folate receptor (FR) as an example in this work, we can determine the protein in a linear range from 0.3 to 15 ng/mL with a detection limit of 0.19 ng/mL. Furthermore, because the method can be used for the assay of FR in serum samples and for the detection of other proteins such as streptavidin by simply changing the small molecule moiety of the DNA probes, this novel method is expected to have great potential applications in the future.  相似文献   

18.
A nonlabeling voltammetric detection method for DNA hybridization has been developed, in which [Fe(CN)(6)](3-) in solution can readily approach an electrode surface covered with a charge-compensated DNA duplex layer and thus provides a strong redox-sensing current. Charge compensation for negative charges on the DNA backbone has been specifically accomplished on DNA duplexes by discouraging nonspecific binding of positively charged intercalating molecules with single strands. A pretreatment of DNA-modified electrodes with sodium dodecyl sulfate before the intercalator binding process is essential in preventing the nonspecific binding. Since ferricyanide, the only electrochemically active species, is present in the voltammetric solution, the detection signal can be amplified by increasing its concentration. Combination of the duplex-specific charge compensation with the signal amplification has achieved a remarkable signal difference: in 30 mM [Fe(CN)(6)](3-), the area ratio between cyclic voltammograms of the hybridized and unhybridized electrodes is approximately 200 when 3,6-diaminoacridine is used as the intercalator. High sensitivity of the method has been demonstrated by detecting 10 fM (100 zmol in amount) of a target probe DNA.  相似文献   

19.
The ability to detect specific oligonucleotides in complex, contaminant-ridden samples, without the use of exogenous reagents and using a reusable, fully electronic platform could revolutionize the detection of pathogens in the clinic and in the field. Here, we characterize a label-free, electronic sensor, termed E-DNA, for its ability to simultaneously meet these challenging demands. We find that because signal generation is coupled to a hybridization-linked conformational change, rather than to only adsorption to the sensor surface, E-DNA is selective enough to detect oligonucleotides in complex, multicomponent samples, such as blood serum and soil. Moreover, E-DNA signaling is monotonically related to target complementarity, allowing the sensor to discriminate between mismatched targets: we readily detect the complementary 17-base target against a 50 000-fold excess of genomic DNA, can distinguish a three-base mismatch from perfect target directly in blood serum, and under ideal conditions, observe statistically significant differences between single-base mismatches. Finally, because the sensing components are linked to the electrode surface, E-DNA is reusable: a 30-s room temperature wash recovers >99% of the sensor signal. This work further supports the utility of E-DNA as a rapid, specific, and convenient method for the detection of DNA and RNA sequences.  相似文献   

20.
Metal nanostructures are promising novel labels for microarray-based biomolecular detection. Additional silver deposition on the surface-bound labels strongly enhances the sensitivity of the system and can lead to continuous metal areas, which enable an electrical readout especially for simple and robust point-of-care analyses. In this paper, atomic force microscopy (AFM) was used to study different routes of metal deposition on labelled DNA-DNA duplexes in electrode gaps. Besides the well-established metal-induced silver enhancement, a recently introduced enzymatic silver deposition was applied and proved highly specific. The in situ characterization was especially focused on the nanostructure percolation-the moment at which the nanoparticulate film becomes continuous and electrically conducting. The formation of conducting paths, continuous from one electrode to the other, was followed by complementary electrical measurements. Thereby, a percolation threshold was determined for the surface coverage with metal structures, i.e.?the required metallized area to achieve conductance. Complementary graphic simulations of the growth process and graphic 'conductance measurements' were developed and proved suitable to model the metal deposition and electrical detection. This may help to design electrode arrays and identify optimum enhancement parameters (required seed concentration and shell growth) as well as draw quantitative conclusions on the existing label (i.e.?analyte) concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号