首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multivalent ions in solution are known to mediate attraction between two like‐charged molecules. Such attraction has proved useful in atomic force microscopy (AFM) where DNA may be immobilized to a mica surface facilitating direct imaging in liquid. Theories of DNA immobilization suggest that either ‘salt bridging’ or fluctuation in the positions of counter ions about both the mica surface and DNA backbone secure DNA to the mica substrate. Whilst both theoretical and experimental evidence suggest that immobilization is possible in the presence of divalent ions, very few studies identify that such immobilization is possible with monovalent ions. Here we present direct AFM evidence of DNA immobilized to mica in the presence of only monovalent ions. Our data depict E. coli plasmid pBR322 adsorbed onto the negatively charged mica both after short (10 min) and long (24 h) incubation periods. These data suggest the need to re‐explore current theories of like‐charge attraction to include the possibility of monovalent interactions. We suggest that this DNA immobilization strategy may offer the potential to image natural processes with limited immobilization forces and hence enable maximum conformational freedom of the immobilized biomolecule.  相似文献   

2.
原子力显微镜作为一种新型的表面表征手段已经得到了各个方面的应用,本文探索了AFM在DNA表面结构中的研究方法,讨论了AFM在研究DNA中优势。  相似文献   

3.
原子力显微镜在多糖分子结构研究中的应用   总被引:2,自引:0,他引:2  
评述原子力显微镜在多糖分子结构和功能研究的进展,AFM不仅可以在空气和液体中对多糖分子单分子和聚集体成像,得到单分子的直径、长度等量化信息和分子聚集体形貌特征。近年来AFM还用于在液体池中操纵单个多糖分子,获取单分子力学谱研究分子的弹性与构型转变的关系,在单分子水平上对多糖进行鉴定,用于细胞表面大分子黏附作用和细胞识别的研究等。AFM新技术的不断出现,必将在高分子科学的研究中起到越来越重要的作用。  相似文献   

4.
The application of scanning force microscope (SFM, also called atomic force microscope or AFM) imaging to study the architecture of proteins and their functional assemblies on DNA has provided new and exciting information on the mechanism of vital cellular processes. Rapid progress in molecular biology has resulted in the identification and isolation of proteins and protein complexes that function in specific DNA transactions. These proteins and protein complexes can now be analysed at the single molecule level, whereby the functional assemblies are often described as nanomachines. Understanding how they work requires understanding their structure and functional arrangement in three dimensions. The SFM is uniquely suited to provide three‐dimensional structural information on biomolecules at nanometre resolution. In this review we focus on recent applications of SFM to reveal detailed information on the architecture and mechanism of action of protein machinery involved in safeguarding genome stability through DNA repair processes.  相似文献   

5.
Lateral force microscopy has been employed to investigate the frictional behaviour of atomic vacancies on the graphite surface. Such a study was only made possible by the controlled expansion of originally single‐atom vacancies into multiatom vacancies, employing oxygen plasma etching for this purpose. Enhanced friction was observed on the vacancy regions compared with pristine areas of graphite, the origin of which is examined and discussed.  相似文献   

6.
陈茜  蔡继业 《现代仪器》2009,15(4):6-9,14
近年来原子力显微镜在测量生物分子间的相互作用力方面取得显著的进步。本文综述原子力显微镜原理以及在生物分子间相互作用方面的研究,为人们理解分子的识别进程,提供一个新的研究方法。  相似文献   

7.
The atomic force microscope (AFM) has provided nanoscale analyses of surfaces of cells that exhibit strong adhesive and cell spreading properties. However, it is frequently reported that prior fixation is required for reliable imaging of cells with lower adhesive properties. In the present study, the AFM is used to assess the effects of fixation by glutaraldehyde on the elastic modulus of a human rhabdomyosarcoma transfectant cell line RDX2C2. Our results show a sharp increase in the elastic modulus for even mild fixation (0.5% glutaraldehyde for 60 s), accompanied by a dramatic improvement in imaging reproducibility. An even larger increase is seen in NIH-3T3 mouse fibroblasts, although in that case fixation is not typically necessary for successful imaging. In addition, our results suggest that treatment with glutaraldehyde restricts the content of the resulting images to features nearer to the cell surface.  相似文献   

8.
Schitter G  Stark RW  Stemmer A 《Ultramicroscopy》2004,100(3-4):253-257
The dynamic behavior of the piezoelectric tube scanner limits the imaging rate in atomic force microscopy (AFM). In order to compensate for the lateral dynamics of the scanning piezo a model based open-loop controller is implemented into a commercial AFM system. Additionally, our new control strategy employing a model-based two-degrees-of-freedom controller improves the performance in the vertical direction, which is important for high-speed topographical imaging. The combination of both controllers in lateral and vertical direction compensates the three-dimensional dynamics of the AFM system and reduces artifacts that are induced by the systems dynamic behavior at high scan rates. We demonstrate this improvement by comparing the performance of the model-based controlled AFM to the uncompensated and standard PI-controlled system when imaging pUC 18 plasmid DNA in air as well as in a liquid environment.  相似文献   

9.
Velocity dependent friction laws in contact mode atomic force microscopy   总被引:1,自引:0,他引:1  
Stark RW  Schitter G  Stemmer A 《Ultramicroscopy》2004,100(3-4):309-317
Friction forces in the tip–sample contact govern the dynamics of contact mode atomic force microscopy. In ambient conditions typical contact radii between tip and sample are in the order of a few nanometers. In order to account for the large interaction area the dynamics of contact mode atomic force microscope (AFM) is investigated under the assumption of a multi-asperity contact interface between tip and sample. Thus, the kinetic friction force between tip and sample is the product of the real contact area between both solids and the interfacial shear strength. The velocity strengthening of the lateral force is modeled assuming a logarithmic relationship between shear-strength and velocity. Numerical simulations of the system dynamics with this empirical model show the existence of two different regimes in contact mode AFM: steady sliding and stick–slip where the tip undergoes periodically stiction and kinetic friction. The state of the system depends on the scan velocity as well as on the velocity dependence of the interfacial friction force between tip and sample. Already small viscous damping contributions in the tip–sample contact are sufficient to suppress stick–slip oscillations.  相似文献   

10.
DNA molecules immobilized on mica surface by various methods have been observed by atomic force microscopy both in air and in liquid. Divalent cations and 3-aminopropyltriethoxysilane (APTES) modified mica surface have been used to immobilize the DNA molecules. Optimal DNA and divalent cations concentration for AFM imaging are presented. Among the different methods of modifying mica surface with APTES, the water solution modifying method appears to get the best results. When using high DNA concentration for AFM imaging, DNA networks can be formed. A simple method to extend long DNA molecules is demonstrated. The optimal imaging conditions and AFM operating techniques are discussed. Different DNA immobilizing methods have been compared and evaluated.  相似文献   

11.
Structural transitions in the tertiary structure of plasmid DNA have been investigated using atomic force microscopy. Changes in superhelical stress were induced by ethidium bromide intercalation, and conformational effects monitored by recording topographic images from DNA complexes of various ethidium bromide : base pair stoichiometry. Significant changes in the tertiary structure of individual DNA molecules were observed with increasing ethidium bromide concentration. The first distinct conformational transition was from a predominantly relaxed structure to one consisting solely of toroidal supercoils. A further increase in ethidium bromide concentration resulted in the formation of regions of plectonemic supercoiling. The ratio of plectonemic : toroidal supercoiling gradually increased until an extremely tightly interwound structure of solely plectonemic supercoiling was finally adopted. The toroidal form of supercoiling observed in this study is unusual as both atomic force microscopy and electron microscopy techniques have previously shown that plectonemic supercoiling is the predominant form adopted by plasmid DNA.  相似文献   

12.
The potential use of atomic force microscopy (AFM) to image the mode of assembly and to measure the corresponding lattice parameters of model systems consisting of ordered aggregates of cardiolipin molecules has been investigated. An unprecedented resolution of about 0·2 nm has been achieved on suitably prepared specimens. This enables the orientational order and the positional correlations of the individual molecules in the lattice to be defined, and submolecular details, such as the acyl chains and the polar groups, to be imaged. The structural parameters derived from AFMhave been compared with those obtained by transmission electron diffraction of the same specimen and found to be in excellent agreement. AFM turns out to be a powerful and probably a unique tool to reveal local phase variations in systems, such as biological membranes, that have non-homogeneous composition and organization.  相似文献   

13.
Immunostimulatory CpG-DNA activates the innate immune system by binding to Toll-like receptor 9. Structurally different CpG-containing oligonucleotides trigger a different type of immune response while activating the same receptor. We therefore investigated the higher order structure of two different classes of immunostimulatory CpG-DNA. Class A, which contains a partly self-complementary sequence and poly-G ends, forms duplexes and nanoparticles in salt solution, while class B, which does not contain these features and is purely linear, does not form a duplex or nanoparticles. Results obtained here by high-resolution atomic force microscopy of classes A and B CpG-DNA, reflect these differences in secondary structure. Detailed structural analysis of the atomic force microscopy topographs is presented for two different sample preparation methods.  相似文献   

14.
Nucleosome is a fundamental structural unit of chromatin, and the exposure from or occlusion into chromatin of genomic DNA is closely related to the regulation of gene expression. In this study, we analyzed the molecular dynamics of poly-nucleosomal arrays in solution by fast-scanning atomic force microscopy (AFM) to obtain a visual glimpse of nucleosome dynamics on chromatin fiber at single molecule level. The influence of the high-speed scanning probe on nucleosome dynamics can be neglected since bending elastic energy of DNA molecule showed similar probability distributions at different scan rates. In the sequential images of poly-nucleosomal arrays, the sliding of the nucleosome core particle and the dissociation of histone particle were visualized. The sliding showed limited fluctuation within ∼50 nm along the DNA strand. The histone dissociation occurs by at least two distinct ways: a dissociation of histone octamer or sequential dissociations of tetramers. These observations help us to develop the molecular mechanisms of nucleosome dynamics and also demonstrate the ability of fast-scanning AFM for the analysis of dynamic protein–DNA interaction in sub-seconds time scale.  相似文献   

15.
Since its invention, the atomic force microscope has been used to image a wide variety of biological samples, including viruses. Viral entry into, and egress from, cultured cells has been extensively studied using numerous scientific techniques and to a limited extent using atomic force microscopy. One of the main structural differences that can exist between viruses is the absence, or presence, of an envelope and this factor has consequences for the mode of viral entry and egress. In this study, the entry into, and egress from, cultured cells of enveloped and non-enveloped viruses were investigated using atomic force microscopy. No significant cell surface changes were observed following infection with enveloped or non-enveloped viruses. Although roughness analysis of viral entry revealed cell smoothing post-infection, no differences between the roughness values of enveloped and non-enveloped viral entry were observed. Line analysis of viral entry revealed minor differences between cells infected with an enveloped rather than a non-enveloped virus. These differences may represent a distinction between the uptake processes of enveloped and non-enveloped viruses. Studies of viral egress revealed that infected cells were undergoing cytopathic changes. Whilst topographic, height and roughness differences clearly occurred between virally- and mock-infected cells, no significant differences were elucidated between enveloped and non-enveloped viral egress.  相似文献   

16.
Atomic force microscopy (AFM) can reveal nanometer-scale structure of samples without the sample preparation techniques that involve dehydration. This is particularly important for hydrophilic organic materials. An asymmetric polysulfone ultrafiltration membrane (molecular weight cutoff rated at 10 kg/mol) was imaged by AFM. Sample mounting methods tried include cyanoacrylate, double-sided tape, and paraffin. Wax and tape bonding did not lead to usable images. Cyanoacrylate bonding resulted in images that appear to show 2.8° 109 pores/m2 approximately 3 nm in diameter, creating a porosity of 2%. This is consistent with estimates of molecular sizes for 10 kg/mol proteins, but not with the results of other AFM studies of similar membranes. The discrepancies can be explained largely by differences in sample preparation techniques.  相似文献   

17.
The atomic force microscope (AFM) has been used to image a wide variety of biological samples, including cultured cells, in air. Whilst cultured cells have been prepared for AFM analysis using a variety of matrices and fixatives, a definitive study of sample preparation and its effects on cell morphology has not, as far as the authors are aware, previously been reported. Although a considerable number of cell fixatives exist, no single fixative is ideal for all investigations. Prior to the performance of specialised techniques, such as atomic force microscopy of cultured cells in air, the cell fixation method must be investigated and optimised. The fixative abilities of 2% paraformaldehyde-lysine-periodate, 0.25% glutaraldehyde, paraformaldehyde-glutaraldehyde, 4% phosphate-buffered formal saline, 1% formaldehyde, methanol:acetone, formal saline, 4% paraformaldehyde and ethanol:acetic acid were assessed in this study. A qualitative assessment system was used to evaluate the efficacy of the above fixatives using conventional fixation criteria (i.e. the presence of fibroblastic morphology consistent with optical microscopy and the absence of fixation artifacts). The optimal fixative was identified as 4% paraformaldehyde, which was capable of providing optically consistent images of BHK-21 (fibroblastic) cells, whose heights remained within the measurement capability of the AFM instrument used in this study.  相似文献   

18.
原子力显微镜原理与应用技术   总被引:3,自引:0,他引:3  
本文简述原子力显微镜的工作原理,对比说明敲击模式的优越性,指出针尖-样品卷积效应和假象产生的原因,并例证其应用领域及其测试效果。  相似文献   

19.
A combination of scanning electron microscopy (SEM) and environmental scanning electron microscopy (ESEM) techniques, as well as atomic force microscopy (AFM) methods has been used to study fragments of the Martian meteorite ALH84001. Images of the same areas on the meteorite were obtained prior to and following gold/palladium coating by mapping the surface of the fragment using ESEM coupled with energy-dispersive X-ray analysis. Viewing of the fragments demonstrated the presence of structures, previously described as nanofossils by McKay et al . (Search for past life on Mars — possible relic biogenic activity in martian meteorite ALH84001. Science , 1996, pp. 924–930) of NASA who used SEM imaging of gold-coated meteorite samples. Careful imaging of the fragments revealed that the observed structures were not an artefact introduced by the coating procedure.  相似文献   

20.
Chitosan has been reported to be a non-toxic, biodegradable antibacterial agent. The aim of this work was to elucidate the relationship between the molecular weight of chitosan and its antimicrobial activity upon two model microorganisms, one Gram-positive (Staphylococcus aureus) and one Gram-negative (Escherichia coli). Atomic force microscopy (AFM) imaging was used to obtain high-resolution images of the effect of chitosans on the bacterial morphology. The AFM measurements were correlated with viable cell numbers, which show that the two species reacted differently to the high- and low-molecular-weight chitosan derivatives. The images obtained revealed not only the antibacterial effects, but also the response strategies used by the bacteria; cell wall collapse and morphological changes reflected cell death, whereas clustering of bacteria appeared to be associated with cell survival. In addition, nanoindentation experiments with the AFM revealed mechanical changes in the bacterial cell wall induced by the treatment. The nanoindentation results suggested that despite little modification observed in the Gram-positive bacteria in morphological studies, cell wall damage had indeed occurred, since cell wall stiffness was reduced after chitooligosaccharide treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号