首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patients infected with HIV-1 often exhibit cognitive deficits that are related to progressive neuronal degeneration and cell death. The protein Tat, which is released from HIV-1-infected cells, was recently shown to be toxic toward cultured neurons. We now report that Tat induces apoptosis in cultured embryonic rat hippocampal neurons. Tat induced caspase activation, and the caspase inhibitor zVAD-fmk prevented Tat-induced neuronal death. Tat induced a progressive elevation of cytoplasmic-free calcium levels, which was followed by mitochondrial calcium uptake and generation of mitochondrial-reactive oxygen species (ROS). The intracellular calcium chelator BAPTA-AM and the inhibitor of mitochondrial calcium uptake ruthenium red protected neurons against Tat-induced apoptosis. zVAD-fmk suppressed Tat-induced increases of cytoplasmic calcium levels and mitochondrial ROS accumulation, indicating roles for caspases in the perturbed calcium homeostasis and oxidative stress induced by Tat. An inhibitor of nitric oxide synthase, and the peroxynitrite scavenger uric acid, protected neurons against Tat-induced apoptosis, indicating requirements for nitric oxide production and peroxynitrite formation in the cell death process. Finally, Tat caused a delayed and progressive mitochondrial membrane depolarization, and cyclosporin A prevented Tat-induced apoptosis, suggesting an important role for mitochondrial membrane permeability transition in Tat-induced apoptosis. Collectively, our data demonstrate that Tat can induce neuronal apoptosis by a mechanism involving disruption of calcium homeostasis, caspase activation, and mitochondrial calcium uptake and ROS accumulation. Agents that interupt this apoptotic cascade may prove beneficial in preventing neuronal degeneration and associated dementia in AIDS patients.  相似文献   

2.
3.
Astrocytes possess plasma membrane glutamate transporters that rapidly remove glutamate from the extracellular milieu and thereby prevent excitotoxic injury to neurons. Cellular oxidative stress is increased in neural tissues in a variety of acute and chronic neurodegenerative conditions. Recent findings suggest that oxidative stress increases neuronal vulnerability to excitotoxicity and that membrane lipid peroxidation plays a key role in this process. We now report that 4-hydroxynonenal (HNE), an aldehydic product of membrane lipid peroxidation, impairs glutamate transport in cultured cortical astrocytes. Impairment of glutamate transport occurred within 1-3 h of exposure to HNE; FeSO4, an inducer of membrane lipid peroxidation, also impaired glutamate transport. Vitamin E prevented impairment of glutamate transport induced by FeSO4, but not that induced by HNE, consistent with HNE acting as an effector of lipid peroxidation-induced impairment of glutamate transport. Glutathione, which binds and thereby detoxifies HNE, prevented HNE from impairing glutamate transport. Western blot, immunoprecipitation, and immunocytochemical analyses using an antibody against HNE-protein conjugates provided evidence that HNE covalently binds to many different astrocytic proteins including the glutamate transporter GLT-1. Data further suggest that HNE promotes intermolecular cross-linking of GLT-1 monomers to form dimers. HNE also induced mitochondrial dysfunction and accumulation of peroxides in astrocytes. Impairment of glutamate transport and mitochondrial function occurred with sublethal concentrations of HNE, concentrations known to be generated in cells exposed to various oxidative insults. Collectively, our data suggest that HNE may be an important mediator of oxidative stress-induced impairment of astrocytic glutamate transport and may thereby play a role in promoting neuronal excitotoxicity.  相似文献   

4.
NIH/3T3 mouse fibroblasts were transfected with the cDNA for manganese superoxide dismutase (MnSOD), and two clones overexpressing MnSOD activity were subsequently characterized by comparison with parental and control plasmid-transfected cells. One clone with a 1.8-fold increase in MnSOD activity had a 1.5-fold increase in glutathione peroxidase (GPX) activity (increased GPX-adapted clone), while a second clone with a 3-fold increase in MnSOD activity had a 2-fold decrease in copper, zinc superoxide dismutase (CuZnSOD) activity (decreased CuZnSOD-adapted clone). Increased reactive oxygen species (ROS) levels compared with parental or control plasmid-transfected cells were observed in nonsynchronous cells in the increased GPX-adapted clone, but not in the decreased CuZnSOD-adapted clone. The two MnSOD-overexpressing clones showed different sensitivities to agents that generate oxidative stress. Flow cytometry analysis of the cell cycle showed altered cell cycle progression in both MnSOD-overexpressing clones. During logarithmic growth, both MnSOD-overexpressing clones showed increased mitochondrial membrane potential compared with parental and control plasmid-transfected cells. Both MnSOD-overexpressing clones showed a decrease in mitochondrial mass at the postconfluent phase of growth, suggesting that mitochondrial mass may be regulated by MnSOD and/or ROS levels. Our results indicate that adaptation of fibroblasts to overexpression of MnSOD can involve more than one mechanism, with the resultant cell phenotype dependent on the adaptation mechanism utilized by the cell.  相似文献   

5.
Perturbed cellular calcium homeostasis has been implicated in both apoptosis and necrosis, but the role of altered mitochondrial calcium handling in the cell death process is unclear. The temporal ordering of changes in cytoplasmic ([Ca2+]C) and intramitochondrial ([Ca2+]M) calcium levels in relation to mitochondrial reactive oxygen species (ROS) accumulation and membrane depolarization (MD) was examined in cultured neural cells exposed to either an apoptotic (staurosporine; STS) or a necrotic (the toxic aldehyde 4-hydroxynonenal; HNE) insult. STS and HNE each induced an early increase of [Ca2+]C followed by delayed increase of [Ca2+]M. Overexpression of Bcl-2 blocked the elevation of [Ca2+]M and the MD in cells exposed to STS but not in cells exposed to HNE. The cytoplasmic calcium chelator BAPTA-AM and the inhibitor of mitochondrial calcium uptake ruthenium red prevented both apoptosis and necrosis. STS and HNE each induced mitochondrial ROS accumulation and MD, which followed the increase of [Ca2+]M. Cyclosporin A prevented both apoptosis and necrosis, indicating critical roles for MD in both forms of cell death. Caspase activation occurred only in cells undergoing apoptosis and preceded increased [Ca2+]M. Collectively, these findings suggest that mitochondrial calcium overload is a critical event in both apoptotic and necrotic cell death.  相似文献   

6.
The reaction of superoxide and nitric oxide results in the formation of peroxynitrite, a long lived and highly reactive oxidant species. It has been suggested that the formation of peroxynitrite in vivo may contribute to cell death in some neurological conditions. We have examined the effect of peroxynitrite on cell death in the NSC34 spinal cord cell line. A brief (30 min) exposure to either peroxynitrite or hydrogen peroxide caused delayed cell death with an EC50 for both of approximately 1 mM. Cell death was prevented by the RNA synthesis inhibitor actinomycin D and included DNA damage as an early event. We sought to clarify the potential role of the DNA binding enzyme poly(ADP-ribose) polymerase (PARP) in cell death in these cells. Several PARP inhibitors [benzamide, 3-aminobenzamide, nicotinamide, and 6(5H)-phenanthridinone] prevented cell death, but the inactive analogue benzoic acid did not. However, there was no evidence of cleavage of PARP, which occurs in apoptosis via the activation of the caspase CPP32. Therefore, we suggest that PARP contributes to neuronal injury as an early event, probably by lethal NAD depletion, without any requirement for proteolytic cleavage.  相似文献   

7.
Arachidonate lipoxygenases (LOX) and their products play an important role in mediating growth factor-supported tumor cell proliferation and growth. The LOX pathway may also be critical in regulating tumor cell survival and apoptosis. Blocking the 12-LOX gene expression with sequence-specific antisense oligos or its activity with general or isoform-specific LOX inhibitors induces a strong apoptotic response in rat W256 carcinosarcoma cells of the monocytoid origin (Tang et al., 1996, Proc. Natl. Acad. Sci. U.S.A., 93:5241-5246). In the present study, several molecular approaches confirmed the predominant expression of platelet-type 12-LOX in W256 cells, with no or little expression of 5- and 15-LOX. NDGA, a general LOX inhibitor and BHPP, a 12-LOX-selective inhibitor, induced rapid and dose-dependent apoptosis of serum-cultured W256 cells as well as several other tumor (in particular leukemia) cell lines, thus suggesting a potential role for LOX in mediating serum-supported tumor cell survival. The molecular mechanism of NDGA-induced W256 cell death was subsequently investigated. NDGA-induced apoptosis could be significantly postponed by overexpression of 12-LOX, thus suggesting that the NDGA effect is, at least partly, dependent on its inhibition of LOX (i.e., 12-LOX). W256 cell apoptosis induced by NDGA could also be effectively inhibited by GSH-elevating or thiol agents as well as by lipid peroxidation inhibitors and an inhibitor of mitochondria respiratory chain rotenone. Further experiments demonstrated that NDGA treatment triggered rapid lipid peroxidation leading to the depletion of cytosolic and mitochondrial GSH pools. Interestingly, the lipid peroxidation induced by NDGA could not be inhibited by conventional free radical scavengers nor by cyclooxygenase or cytochrome P-450 monooxygenase inhibitors. In summary, the present work suggests a role of 12-LOX in regulating serum (growth factor)-supported survival of certain tumor cells.  相似文献   

8.
To investigate the role of superoxide in the toxicity of nitric oxide (NO), we examined the effect of nitric oxide synthase (NOS) inhibition on brain infarction in transgenic mice overexpressing CuZn-superoxide dismutase (SOD-1). Male SOD-transgenic mice and non-transgenic littermates (30-35 g) were subjected to 60 min of middle cerebral artery occlusion followed by 24 h of reperfusion. Either NG-nitro-L-arginine methyl ester (L-NAME; 3 mg/kg), a mixed neuronal and endothelial NOS inhibitor, or 7-nitroindazole (7-NI; 25 mg/kg), a selective neuronal NOS inhibitor, was administered intraperitoneally 5 min after the onset of ischemia. At 24 h of reperfusion, the mice were decapitated and the infarct volume was evaluated in each group. In the nontransgenic mice, L-NAME significantly increased the infarct volume as compared with the vehicle, while 7-NI significantly decreased it. In the SOD-transgenic mice, L-NAME-treated animals showed a significantly larger infarct volume than vehicle-treated ones, whereas there were no significant differences between 7-NI- and vehicle-treated mice. Our findings suggest that selective inhibition of neuronal NOS ameliorates ischemic brain injury and that both neuronal and endothelial NOS inhibition may result in the deterioration of ischemic injury due to vasoconstriction of the brain. Since L-NAME increased infarct volume even in SOD-transgenic mice, the protective effect of SOD could result from the vasodilation by increased endothelial NO as well as the reduction of neuronal injury due to less production of peroxynitrite compared to wild-type mice. Moreover, the neurotoxic role of NO might not be dependent on NO itself, but the reaction with superoxide to form peroxynitrite, because of no additive effects of SOD and a neuronal NOS inhibitor.  相似文献   

9.
We studied the molecular mechanisms of apoptosis in the prostate cancer cell line LNCaP and whether overexpression of caspase activity could force this cell line to undergo apoptosis. The inhibitor of phosphomevalonate decarboxylase, sodium phenylacetate, and the protein kinase inhibitor staurosporine induced (a) release of cytochrome c from the mitochondria to the cytosol; (b) reduction in mitochondrial transmembrane potential; (c) proteolytic processing of caspase-3 and -7 but not -2; (d) cleavage of the DEVD substrate and the death substrates poly(ADP-ribose) polymerase and DNA fragmentation factor; and (e) apoptosis. The panspecific inhibitor of caspase activation N-benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone (z-VAD-FMK) prevented all of these events except release of mitochondrial cytochrome c into the cytosol. None of these apoptotic signaling events were elicited by staurosporine or sodium phenylacetate treatment of LNCaP-Bcl-2 cells that overexpress the oncoprotein Bcl-2. Because caspase-7 is activated in every model of apoptosis that we have characterized thus far, we wished to learn whether overexpression of this protease could directly cause apoptosis of LNCaP cells. By using a replication-defective adenovirus, overexpression of caspase-7 protein in both LNCaP and LNCaP-Bcl-2 cells was accompanied by induction of cleavage of the DEVD substrate and TUNEL. These studies have demonstrated that caspase-7 and -3 are critical mediators of apoptosis in LNCaP cells. Caspase-7 was proteolytically activated in every model of apoptosis that we have developed, and the overexpression of it induced apoptosis of LNCaP and LNCaP-Bcl-2 cells. Thus, adenoviral-mediated transfer of caspase-7 may offer a new effective approach for the treatment of prostate cancer.  相似文献   

10.
Molecular characterization of mitochondrial apoptosis-inducing factor   总被引:3,自引:0,他引:3  
Mitochondria play a key part in the regulation of apoptosis (cell death). Their intermembrane space contains several proteins that are liberated through the outer membrane in order to participate in the degradation phase of apoptosis. Here we report the identification and cloning of an apoptosis-inducing factor, AIF, which is sufficient to induce apoptosis of isolated nuclei. AIF is a flavoprotein of relative molecular mass 57,000 which shares homology with the bacterial oxidoreductases; it is normally confined to mitochondria but translocates to the nucleus when apoptosis is induced. Recombinant AIF causes chromatin condensation in isolated nuclei and large-scale fragmentation of DNA. It induces purified mitochondria to release the apoptogenic proteins cytochrome c and caspase-9. Microinjection of AIF into the cytoplasm of intact cells induces condensation of chromatin, dissipation of the mitochondrial transmembrane potential, and exposure of phosphatidylserine in the plasma membrane. None of these effects is prevented by the wide-ranging caspase inhibitor known as Z-VAD.fmk. Overexpression of Bcl-2, which controls the opening of mitochondrial permeability transition pores, prevents the release of AIF from the mitochondrion but does not affect its apoptogenic activity. These results indicate that AIF is a mitochondrial effector of apoptotic cell death.  相似文献   

11.
Oxidized low density lipoprotein (oxLDL) induces apoptosis in vascular cells. To elucidate the mechanisms involved in this apoptosis, we studied the apoptosis-inducing activity in lipid fractions of oxLDL and the roles of two common mechanisms, ceramide generation and the activation of caspases, in apoptosis in human umbilical vein endothelial cells treated with oxLDL. We also studied the effects of antioxidants and cholesterol. oxLDL induced endothelial apoptosis in a time- and dose-dependent fashion. Apoptosis-inducing activity was recovered in the neutral lipid fraction of oxLDL. Various oxysterols in this fraction induced endothelial apoptosis. Neither the phospholipid fraction nor its component lysophosphatidylcholine induced apoptosis. oxLDL induced ceramide accumulation temporarily at 15 min in a dose-dependent fashion. Two inhibitors of acid sphinogomyelinase inhibited both the increase in ceramide and the apoptosis induced by oxLDL. Furthermore, a membrane-permeable ceramide (C2-ceramide) induced endothelial apoptosis. These findings demonstrated that ceramide generation by acid sphingomyelinase is indispensable for the endothelial apoptosis induced by oxLDL. Inhibitors of both caspase-1 and caspase-3 inhibited the apoptosis, suggesting that oxLDL induced apoptosis by activating these cysteine proteases. The antioxidants butylated hydroxytoluene and superoxide dismutase but not catalase inhibited the apoptosis induced by oxLDL or 25-hydroxycholesterol. This suggests not only that superoxide plays an important role but also that a critical interaction between oxLDL and the cell takes place on the outer surface of the membrane, because superoxide dismutase is not membrane-permeable. Exogenous cholesterol also inhibited the apoptosis. Our study demonstrated that neutral lipids in oxLDL induce endothelial apoptosis by activating membrane sphingomyelinase in a superoxide-dependent manner, as well as by activating caspases.  相似文献   

12.
A growing body of evidence supports a role for mitochondria and mitochondria-derived factors in the cell death process. In particular, much attention has focused on cytochrome c, a key component of the electron transport chain, that has been reported to translocate from the mitochondria to the cytosol in cells undergoing apoptosis. The mechanism for this release is, as yet, unknown. Here we report that ectopic expression of Bax induces apoptosis with an early release of cytochrome c preceding many apoptosis-associated morphological alterations as well as caspase activation and subsequent substrate proteolysis. A loss of mitochondrial transmembrane potential was detected in vivo, although no mitochondrial swelling or loss of transmembrane potential was observed in isolated mitochondria treated with Bax in vitro. Caspase inhibitors, such as endogenous XIAP and synthetic peptide benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk), although capable of altering the kinetics and perhaps mode of cell death, had no influence on this release, suggesting that if cytochrome c plays a role in caspase activation it must precede this step in the apoptotic process. Mitochondrial permeability transition was also shown to be significantly prevented by caspase inhibition, indicating that the translocation of cytochrome c from mitochondria to cytosol is not a consequence of events requiring mitochondrial membrane depolarization. In contrast, Bcl-xL was capable of preventing cytochrome c release while also significantly inhibiting cell death. It would therefore appear that the mitochondrial release of factors such as cytochrome c represents a critical step in committing a cell to death, and this release is independent of permeability transition and caspase activation but is inhibited by Bcl-xL.  相似文献   

13.
14.
Bcl2 overexpression prevents axotomy-induced neuronal death of neonatal facial motoneurons, as defined by morphological criteria. However, the functional properties of these surviving lesioned transgenic neurons are unknown. Using transgenic mice overexpressing the protein Bcl2, we have investigated the bioelectrical properties of transgenic facial motoneurons from 7 to 20 days after neonatal unilateral axotomy using brain-stem slices and whole cell patch-clamp recording. Nonaxotomized facial motoneurons from wild-type and transgenic mice had similar properties; they had an input resistance of 38 +/- 6 M omega and fired repetitively after injection of positive current pulses. When cells were voltage-clamped at or near their resting membrane potential, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), N-methyl-D-aspartic acid (NMDA), or vasopressin generated sustained inward currents. In transgenic axotomized mice, facial motoneurons could be found located ipsilaterally to the lesion; they had an input resistance of 150 +/- 30 M omega, indicating that they were smaller in size, fired repetitively, and were also responsive to AMPA, NMDA, and vasopressin. Morphological measurements achieved 1 week after the lesion have shown that application of brain-derived neurotrophic factor prevented the reduction in size of axotomized transgenic motoneurons. These data indicate that Bcl2 not only prevents morphological apoptotic death of axotomized neonatal transgenic motoneurons but also permits motoneurons to conserve functional electrophysiological properties.  相似文献   

15.
Aminoguanidine (AG) treatment, like nerve growth factor (NGF) treatment, prevents diabetes-induced apoptosis of retinal Müller cells in the rat eye, but the mechanism involved is unknown. In this study, the effects of preincubation with AG on oxidant-induced apoptosis, oxidant-induced intracellular reactive oxygen species (ROS) production, and lipid peroxidation were determined in rat retinal Müller cells and compared with the effects of NGF, a protein that protects neuronal cells from oxidative stress. The effect of AG on rabbit vitreous lipid peroxide levels was also determined. After exposure to increasing concentrations of H2O2, there was a corresponding increase in the percentage of apoptotic Müller cells. Preincubation with AG for 48 h completely inhibited oxidant-induced apoptosis in response to 10 micromol/l H2O2 (+AG 0 vs. 10 micromol/l, NS), and reduced the percentage of apoptotic cells in response to 50 micromol/l H2O2 by 50% (+AG vs. -AG, P < 0.01). Longer preincubation did not increase the antiapoptotic effect of AG. The effect of AG was dose-dependent. Similar results were obtained after preincubation with NGF. Both AG and NGF preincubation prevented the twofold increase in oxidant-induced lipid peroxides. The fivefold increase in oxidant-induced ROS production was decreased 100% by NGF, but only 61% by AG preincubation. The twofold increase in vitreous lipid peroxide level in diabetic rabbits was completely prevented by AG treatment. AG reduced H2O2-induced benzoate hydroxylation in a dose-dependent manner. Intracellular glutathione content was unchanged. These data demonstrate that AG can act as an antioxidant in vivo, quenching hydroxyl radicals and lipid peroxidation in cells and tissues and preventing oxidant-induced apoptosis.  相似文献   

16.
Jurkat cells express Fas, and rapidly undergo apoptosis in response to Fas ligand or an agonistic anti-Fas antibody. This apoptotic pathway is mediated by a cascade of caspases. In this report, we show that Fas activation induced the processing of caspase 8 in Jurkat cells with a time frame similar to the activation of caspase 3 and the proteolysis of nuclear proteins. Jurkat cell transformants that overexpress Bcl-2 were partially but not completely resistant to the Fas-induced apoptosis. Little processing of caspase 8 was observed upon Fas activation in these transformants. Furthermore, although caspase 8 was recruited to Fas upon Fas activation in the parental Jurkat cells, the recruitment of caspase 8 to Fas was inhibited in the transformants overexpressing Bcl-2. These results suggest that Bcl-2 inhibits Fas-induced apoptosis by preventing the formation of the death-inducing signaling complex that is composed of Fas, FADD/MORT1, and caspase 8.  相似文献   

17.
Oxidative stress and mitochondrial dysfunction are implicated in the neuronal cell death that occurs in physiological settings and in neurodegenerative disorders. In Alzheimer's disease (AD) degenerating neurons are associated with deposits of amyloid beta-peptide (A beta), and there is evidence for increased membrane lipid peroxidation and protein oxidation in the degenerating neurons. Cell culture studies have shown that A beta can disrupt calcium homeostasis and induce apoptosis in neurons by a mechanism involving oxidative stress. We now report that catecholamines (norepinephrine, epinephrine, and dopamine) increase the vulnerability of cultured hippocampal neurons to A beta toxicity. The catecholamines were effective in potentiating A beta toxicity at concentrations of 10-200 microM, with the higher concentrations (100-200 microM) themselves inducing cell death. Serotonin and acetylcholine were not neurotoxic and did not modify A beta toxicity. Levels of membrane lipid peroxidation, and cytoplasmic and mitochondrial reactive oxygen species, were increased following exposure to neurons to A beta, and catecholamines exacerbated the oxidative stress. Subtoxic concentrations of catecholamines exacerbated decreases in mitochondrial energy charge and transmembrane potential caused by A beta, and higher concentrations of catecholamines alone induced mitochondrial dysfunction. Antioxidants (vitamin E, glutathione, and propyl gallate) protected neurons against the damaging effects of A beta and catecholamines, whereas the beta-adrenergic receptor antagonist propanolol and the dopamine (D1) receptor antagonist SCH23390 were ineffective. Measurements of intracellular free Ca2+ ([Ca2+]i) showed that A beta induced a slow elevation of [Ca2+]i which was greatly enhanced in cultures cotreated with catecholamines. Collectively, these data indicate a role for catecholamines in exacerbating A beta-mediated neuronal degeneration in AD and, when taken together with previous findings, suggest roles for oxidative stress induced by catecholamines in several different neurodegenerative conditions.  相似文献   

18.
BACKGROUND: In a previous study, nitric oxide synthases (NOS) were found to be strongly expressed in the tubular epithelium of kidneys of a transgenic mouse model of sickle cell disease (alphaHbetaS[betaMDD]). Because NOS activity is often associated with peroxynitrite formation when superoxide radical (.O-2) is present in abundance, we examined the kidneys of sickle cell mice for nitrotyrosine, considered to be a footprint of ONOO-. METHODS: Western blot and immunohistochemistry for nitrotyrosine was carried out. Since peroxynitrite and other reactive oxygen radicals are capable of causing apoptosis, we also performed agarose gel electrophoresis of kidney DNA and TUNEL staining of nuclei, indicators of apoptosis. RESULTS: Nitration of tyrosine residues of three proteins (kD 66, 57 and 22) was found on Western blot of kidney protein extracts of the sickle cell mice. The degree of tyrosine nitration of the 66 kD protein was not significantly different in the control versus transgenic mice, whereas tyrosine nitration of the 57 and 22 kD proteins was clearly increased in transgenic mice. Strong immunostaining for nitrotyrosine was seen in tubular epithelial cells of the sickle cell mice, in close proximity to positive immunostaining of iNOS. Neither iNOS nor nitrotyrosine was expressed in the control mice. DNA "laddering" was found localized to the same zones of the kidney as nitrotyrosine and iNOS immunostaining. TUNEL assay on mouse kidney tissue sections showed minimal tubular cell apoptosis in normal mouse with hypoxia, mild tubular cell apoptosis in sickle cell mouse in room air, and moderate tubular cell apoptosis in sickle cell mouse with hypoxia. CONCLUSIONS: The observations suggest that ONOO- and perhaps other reactive oxygen species are being produced in the sickle cell kidney. The mechanism may be ischemia/reperfusion due to intermittent vascular occlusion by sickle cells. The resulting hypoxia could result in iNOS activation, superoxide radical and peroxynitrite formation. Two consequences of these reactions appear to be nitration of tyrosine residues of some renal proteins and enhanced apoptosis.  相似文献   

19.
The proto-oncogene Bcl-2 rescues cells from a wide variety of insults. Recent evidence suggests that Bcl-2 protects against free radicals and that it increases mitochondrial calcium-buffering capacity. The neurotoxicity of 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyride (MPTP) is thought to involve both mitochondrial dysfunction and free radical generation. We therefore investigated MPTP neurotoxicity in both Bcl-2 overexpressing mice and littermate controls. MPTP-induced depletion of dopamine and loss of [3H]mazindol binding were significantly attenuated in Bcl-2 overexpressing mice. Protection was more profound with an acute dosing regimen than with daily MPTP administration over 5 d. 1-Methyl-4-phenylpyridinium (MPP+) levels after MPTP administration were similar in Bcl-2 overexpressing mice and littermates. Bcl-2 blocked MPP+-induced activation of caspases. MPTP-induced increases in free 3-nitrotyrosine levels were blocked in Bcl-2 overexpressing mice. These results indicate that Bcl-2 overexpression protects against MPTP neurotoxicity by mechanisms that may involve both antioxidant activity and inhibition of apoptotic pathways.  相似文献   

20.
We and others have recently shown that loss of the mitochondrial membrane potential (Deltapsi) precedes apoptosis and chemical-hypoxia-induced necrosis and is prevented by Bcl-2. In this report, we examine the biochemical mechanism used by Bcl-2 to prevent Deltapsi loss, as determined with mitochondria isolated from a cell line overexpressing human Bcl-2 or from livers of Bcl-2 transgenic mice. Although Bcl-2 had no effect on the respiration rate of isolated mitochondria, it prevented both Deltapsi loss and the permeability transition (PT) induced by various reagents, including Ca2+, H2O2, and tert-butyl hydroperoxide. Even under conditions that did not allow PT, Bcl-2 maintained Deltapsi, suggesting that the functional target of Bcl-2 is regulation of Deltapsi but not PT. Bcl-2 also maintained Deltapsi in the presence of the protonophore SF6847, which induces proton influx, suggesting that Bcl-2 regulates ion transport to maintain Deltapsi. Although treatment with SF6847 in the absence of Ca2+ caused massive H+ influx in control mitochondria, the presence of Bcl-2 induced H+ efflux after transient H+ influx. In this case, Bcl-2 did not enhance K+ efflux. Furthermore, Bcl-2 enhanced H+ efflux but not K+ flux after treatment of mitochondria with Ca2+ or tert-butyl hydroperoxide. These results suggest that Bcl-2 maintains Deltapsi by enhancing H+ efflux in the presence of Deltapsi-loss-inducing stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号