首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 218 毫秒
1.
投影机更新速度快,高分辨率、轻便微小的投影机已是时代的需求。通过分析微型投影成像系统的特点,根据几何光学理论,用Zemax软件设计了一款投影显示芯片为0.61inch(1inch=2.54cm)、投射比为0.68∶1的微型投影镜头。镜头由2片非球面透镜和6片常用玻璃材料透镜组成,结构简单,系统光学总长为60mm,有效焦距为9.26mm,后工作距离大于20mm,最大口径小于23mm,全视场(FOV)为80°,相对孔径为1∶2.2。在71lp/mm特征频率处,全视场的调制传递函数均大于0.5,全视场相对畸变小于2.0%,镜头成像质量好。对微型投影系统进行容差分析,得出一套较为宽松的公差,适合生产加工。  相似文献   

2.
利用Zemax软件设计一款1 600万像素的手机镜头。该镜头由6片塑料非球面镜片组成,镜头的F数为2,全视场角为78°。采用Omnivision公司OV16880型号的CMOS作为图像传感器,像素元尺寸为1μm×1μm,奈奎斯特频率为500lp/mm,最大像素数为1 600万,最大像高为5.93mm。最终设计结果,镜头光学总长度为5mm,1/2奈奎斯特频率处的全视场MTF>0.3,相对照度大于40%,畸变小于2%,场曲小于0.1mm,可以获得优质的成像效果。公差分析结果表明,该镜头加工工艺性良好。  相似文献   

3.
王波 《光学仪器》2016,38(5):434-440
为满足全景监控镜头的高清、大视场的要求,采用反远距系统设计了工作波段为可见的4.86~6.56μm、F数为2、垂直全视场角为185°、焦距为1.3mm的1 000万像素高清全景监控镜头光学系统。通过匹配光学材料和分配透镜光焦度,在-20~+60℃温度范围内对全景监控镜头光学系统进行了设计及像质评价。结果表明,系统在奈奎斯特频率300lp·mm-1处中心视场的光学调制传函接近衍射极限,大于0.4,0.7视场以内的光学调制传函大于0.3。系统整体无温度离焦,成像质量良好、结构紧凑,且适用于感光面尺寸为6.119mm×4.589mm、像元数为3 664×2 748的CMOS探测器。  相似文献   

4.
梅培俊  许键 《光学仪器》2017,39(5):64-69
利用Zemax光学设计软件设计了一款适用于光学成像尺寸为38mm的互补金属氧化物半导体(CMOS)型工业相机的高分辨率测量镜头,该工业相机用于自动化定量分析检测显微镜像差。通过数码图像处理的方式去评判显微镜物镜性能的好坏。在满足性能要求基础上,对普通的测量镜头结构加以优化,使得测量镜头拥有非常高的分辨率。该镜头焦距为36mm,后工作距约为32mm,视场像面高度为36mm,在90lp/mm处,中心视场调制传递函数(MTF)值大于0.45,边缘视场MTF值大于0.25。  相似文献   

5.
大面阵中波红外连续变焦光学系统设计   总被引:6,自引:0,他引:6  
针对制冷式大面阵640×512凝视焦平面阵列探测器,设计了一套中波红外连续变焦光学系统。该系统由变焦系统和二次成像系统构成,包括7片透镜和2个反射镜组成的折叠光路。首先,根据变焦原理和专业光学设计软件给出了系统结构及其参数。然后,分析了系统的像质和冷反射效应。最后,验证了系统的性能指标。结果表明:该系统可以实现50~500mm的连续变焦,变焦过程中目标景物始终清晰可见;系统在耐奎斯特频率处的全视场光学传递函数大于0.35,全视场畸变小于2%,无冷反射现象;具有分辨率高、热灵敏度高、像质好、变焦轨迹平滑等特点,基本满足设计要求。  相似文献   

6.
红外多目标复合仿真光学系统设计   总被引:1,自引:0,他引:1  
基于透射式复合投影以及微透镜阵列扩束设计了适用于1~3 μm和3~5 μm波段的红外多目标复合模拟器的光学系统。该模拟器的干扰光路采用透射式复合投影并利用微透镜阵列完成扩束。此外,采用前无焦系统和后聚焦镜组结合的方式,通过在平行光路中引入平面耦合镜,实现了目标和干扰光路共用一套投影系统。设计过程对目标光学系统、干扰光学系统和主投影光学系统分开优化,之后对系统进行整体优化。该系统入瞳距为200 mm,视场为±4°,全视场调制传递函数(MTF)在20 lp/mm时大于0.6,接近衍射极限。文中分析了加工装调完成后光学系统的实测MTF数据,结果表明,MTF在20 lp/mm时大于0.3,完全满足应用技术指标。该系统已成功应用于新型红外目标模拟器,对未来红外仿真光学系统的设计有参考意义。  相似文献   

7.
小型可见光双视场光学系统的研制   总被引:2,自引:1,他引:1  
基于光学设计基本理论,设计了一种体积小,跟踪范围可以达到整个前半球的可见光双视场光学系统.系统由前部集束系统,中间光路转折系统及后部成像系统3部分组成.集束系统采用望远镜式结构,用于改变光束的口径;光路转折系统采用库德光路,由4片反射镜组成,用于转折光路及扫描;成像系统由长焦成像系统和短焦成像系统组成,分别形成两个视场的像,用于目标识别与跟踪.光学系统焦距分别为60 mm和120 mm,设计传递函数在58 lp/mm处均大于0.5.加工装调后进行了成像试验验证,结果表明,该系统能够同时完成大视场及小视场的图像获取,在可视范围内成像质量满足系统总体要求.  相似文献   

8.
长波红外广角地平仪镜头的光学设计   总被引:7,自引:3,他引:7  
介绍适用于非致冷凝视式焦平面阵列的长波红外(LWIR)广角地平仪镜头的光学设计.其工作波长范围10~16μm,全视场角为135°.采用"负-正-正"型式的反远距像方远心光路镜头结构,仅有三块非球面锗透镜构成.能够很好地解决广角镜头轴外像差校正和像面照度均匀性问题.此镜头结构简单、体积很小、后工作距离大,成像质量接近于衍射极限,在20lp/mm空间频率处的调制传递函数值超过0.6,像高与视场角关系偏离线性的相对误差不超过15%.文中还分析了此镜头的加工和装调公差.  相似文献   

9.
针对实时广域高分辨率成像需求同时保证系统结构的小型化与轻量化,设计了高集成度共心多尺度光学成像系统。该系统采用伽利略型共心多尺度成像结构将球透镜与次级相机阵列进行级联,以充分利用双层共心球透镜视场大且全视场成像效果一致性好的特点,并发挥伽利略型共心多尺度结构体积紧凑的优势。此外,通过设计相机阵列的排列方式进一步减少相机使用数量,实现轻量化。通过全系统联动设计与优化,系统的调制传递函数曲线在特征频率270 lp/mm处可达0.3,全视场弥散斑均方根(RMS)半径均小于探测器像元尺寸1.85μm,成像效果优良,且公差分析结果表明系统易加工制造。该系统不仅能够有效实现大视场高分辨率成像,而且具有低的结构复杂度及更紧凑的结构,应用前景广阔。  相似文献   

10.
拍照手机镜头MTF的测量方法   总被引:2,自引:0,他引:2  
镜头调制传递函数(MTF)的测量有正投影和逆投影两种方法。拍照手机镜头由于体积小、后焦短、所配感光器的像素越来越高,正投影法测量用的CMOS/CCD受其保护玻璃厚度和自身像素的制约而有局限性;逆投影法颠倒镜头成像系统物和像的位置,克服了手机镜头后焦、像素等的限制。实验结果证明逆投影法能快速测量拍照手机镜头的MTF,方便评定镜头的品质,有较大的实用价值。  相似文献   

11.
黄红林  许键 《光学仪器》2016,38(1):49-52
利用Zemax光学设计软件设计了一款适用于0.6英寸数字光处理(DLP)的微型投影仪镜头。在满足性能要求的基础上,对普通投影仪加以优化,使投影仪结构更加紧凑,方便携带。系统焦距8.25mm,后工作距约为18mm,视场为70°。在33lp/mm处,中心MTF值大于0.6,边缘MTF值大于0.4。  相似文献   

12.
利用Code V光学工程软件,设计了一款800万像素手机镜头。镜头采用1G3P结构,光圈值F为2.8,视场角62°。采用东芝公司一款800万像素的1/2.6英寸CMOS传感器作为设计镜头的感光元件,像素大小为1.75μm,相应的尼奎斯特频率为285lp/mm。设计结果表明,在尼奎斯特频率处,大部分视场的MTF值均大于0.3,在尼奎斯特频率1/2处,视场的MTF值均大于0.5,最大畸变为-1.05%,成像性能良好,满足使用要求。  相似文献   

13.
本文所论述的f=20mm、D/f=1/1.19、2ω=68.5°,35mm电影摄影物镜,是目前我国大孔径、大视场定焦距系列中焦距最短的一个.下面就二个方面问题做介绍,1.设计过程简介.2.设计结果.  相似文献   

14.
广角f-θ静态红外地平仪镜头的光学设计   总被引:2,自引:0,他引:2  
刘英  王靖  曲锋  孙强  卢振武 《光学精密工程》2010,18(6):1243-1248
为了满足航天器对轻小、价廉,性能可靠的自主导航系统的要求,设计了广角静态红外地平仪系统。该系统选择辐射稳定的14~16.25μm作为工作波段,并设定全视场角为136°,F数为0.61;采用反远距结构,使系统后工作距达到15mm;利用f-θ镜头设计原理,并合理地选用非球面对广角系统进行优化设计,使系统的线性特性的相对误差0.5%;在空间频率为15lp/mm处,系统的调制传递函数0.6,接近衍射极限;在半径为20μm的圆内,系统径向能量85%。另外,采用了像方远心光路,提高了像面的照度均匀性,实现了整个像面照度均匀性99%。设计结果表明,该镜头结构简单、体积小、后工作距大,很好地解决了广角镜头轴外像差平衡问题,实现了地平仪系统的高精度设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号