首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 343 毫秒
1.
新型波形钢腹板支架结构及力学性能分析   总被引:1,自引:0,他引:1  
提出一种适用于软岩隧道(巷道)中的新型波形腹板金属支架结构.波形腹板工型构件由波形钢腹板与平翼缘钢板焊接而成.这种结构加工制作简单、施工快捷、能较好地适应软岩大变形、力学性能良好.以马蹄形断面的支架为例,分析了波形腹板支架结构的弹性屈曲性能,讨论了构件截面各参数变化对其弹性屈曲荷载的影响.结果表明:波形腹板的波幅、波高对结构屈曲荷载的影响不大,而腹板高度和翼缘宽度等参数对其影响较显著.通过对波形腹板工型构件、U型钢和矿用工字钢构件稳定承载力的比较表明,波形腹板构件的轴压稳定承载力较高,用钢量较省,具有良好的经济效益.  相似文献   

2.
本文采用ANSYS有限元软件建立模型分析了高强钢(名义屈服强度为460 MPa)腹板高厚比超限的焊接矩形管截面偏压构件的极限承载力,以及构件长细比、腹板高厚比、翼缘宽厚比和相对偏心率对极限承载力的影响,提出腹板高厚比超限高强钢压弯构件平面内极限承载力计算公式.研究表明:考虑初弯曲和残余应力影响的双重非线性有限元模型能够很好地模拟高强钢焊接箱形截面偏心受压构件的局部-整体相关屈曲;高强钢薄腹矩形管截面压弯构件平面内无量纲化极限承载力Pu/(Afy)与构件长细比、腹板高厚比和翼缘宽厚比近似为线性关系;高强钢薄腹矩形管截面偏压构件的轴力和弯矩相关曲线近似为直线;按边缘纤维屈服准则推导的公式经过修正之后可用于计算高强钢压弯构件局部-整体相关屈曲的极限承载力.  相似文献   

3.
为研究弹性支撑刚度对矩形钢管混凝土翼缘工字形梁稳定性能的影响,开展了集中荷载作用下3根带有不同弹性支撑刚度的矩形钢管混凝土翼缘工字形梁的稳定性能试验,研究试验梁的位移及应变的变化规律,获得梁的失稳形式和稳定承载力。试验结果表明,整个加载破坏过程分为三个阶段,即弹性阶段、弹塑性阶段和破坏阶段,3根试验梁均发生整体弯扭屈曲失稳。随着弹性支撑刚度增加,梁稳定承载力增大,验证了设置弹性支撑可有效地提高该梁的稳定承载力。在试验基础上,利用ANSYS有限元软件对该梁进行非线性屈曲分析,将获得的稳定承载力与试验结果进行对比,误差均小于5%,从而验证有限元分析方法的正确性。最后,研究了混凝土强度、上翼缘含钢率和腹板高厚比等参数对该类梁稳定性能的影响规律。研究表明,增大上翼缘钢管含钢率和减小腹板高厚比均可明显提高该类梁的稳定承载力,而增强混凝土强度对梁的稳定承载力提高较小。  相似文献   

4.
内填部分混凝土箱形截面钢桥墩的延性影响参数   总被引:1,自引:0,他引:1  
为了研究内填部分混凝土箱形截面钢桥墩在恒定竖向荷载与柱顶水平往复荷载作用下的延性性能,建立三维弹塑性有限元模型,通过比较模拟结果与试验结果的水平荷载-水平位移滞回曲线和破坏模态,确定了所采用有限元分析方法的准确性与有效性。以翼缘宽厚比、柱长细比、混凝土填充率和柱轴压比为变化参数,建立56个三维弹塑性有限元分析模型,归纳总结了钢桥墩可能出现的各破坏模态:对于纯钢桥墩,局部屈曲发生在试件底部;对于内填部分混凝土钢桥墩,当混凝土填充率较小时,局部屈曲通常发生在内填混凝土上部钢板处;随着混凝土填充率的增大,局部屈曲出现在试件底部附近。最后分析上述4个参数对钢桥墩极限承载力和延性性能的影响规律。  相似文献   

5.
新型波形钢腹板支架结构平面内弹性屈曲性能分析   总被引:1,自引:1,他引:0  
摘要:波形腹板金属支架结构由于腹板波折后较平腹板构件的受力性能得到了很大的改善。本文以马蹄形断面波形腹板支架形式为例,采用正交设计方法建立了静水压力下支架结构的腹板厚度、腹板高度、翼缘宽度和厚度等截面参数如与支架结构一阶弹性整体屈曲荷载之间的函数关系;并在此基础上分析马蹄形断面各半径变化对整体屈曲荷载的影响,进而推导出支架结构一阶弹性整体屈曲荷载的计算公式。  相似文献   

6.
为了研究Q500qE高性能钢外伸翼缘薄壁加劲箱形压弯构件的稳定特性,开展3个Q500qE和1个Q345B的构件模型试验,分析试验构件的荷载-位移曲线、整体和局部屈曲形态.整体屈曲试验结果表明,采用Q500qE高性能钢和设置外伸翼缘可以有效提高薄壁箱形压弯构件极限承载力且能够改善构件整体稳定特性.局部屈曲试验表明,外伸翼缘宽厚比对平面外局部屈曲半波数和局部变位影响较大,故需要根据现有规范中的宽厚比限值要求限制外伸翼缘板局部屈曲.对于构件的极限承载力和屈曲形态,试验结果与弹塑性数值分析结果吻合较好.分别采用允许应力法和极限状态法对Q500qE构件进行稳定验算,与试验结果进行比较,表明现有规范中的相关验算公式适用于验算此类压弯构件.  相似文献   

7.
应用ANSYS有限元,分析了Q460高强钢焊接薄腹工形截面双向压弯构件的稳定性能,提出了可供实际应用参考的设计公式。分析中考虑的主要参数有腹板高厚比,构件长细比,翼缘宽厚比及荷载偏心率。结果表明,对受压为主的构件,腹板局部屈曲对构件稳定承载力影响较大,而对受弯为主的构件,这一因素对构件稳定承载力影响较小。有限元分析结果与现行规范方法计算结果比较表明,目前规范方法尚不能较好地计算高强钢焊接薄腹工形截面双向压弯构件的稳定承载力,因而提出了修正直接强度法,该法精度较好且偏于安全。  相似文献   

8.
以3 m长、6种不同壁厚(0.8 mm、1.0 mm、1.2 mm、1.5 mm、1.8 mm、2.0 mm)的格构槽钢立柱为研究对象,对其进行轴压试验,得到试件的受力性能、极限承载力和失稳形式,并进行了有限元分析和比较。结果表明:在轴压荷载作用下,较薄试件(0.8 mm)的单肢先发生局部屈曲,而后试件绕弱轴发生整体的弯曲失稳;其它厚度试件一般发生整体弯曲失稳。试件的荷载-位移关系曲线包括弹性、弹塑性和塑形破坏3个阶段,但弹塑性阶段表现得并不明显。典型试件荷载-位移曲线的有限元分析结果与试验数据十分接近,试件局部失稳和整体失稳模型的有限元分析与试验结果也十分相似。试件极限承载力的有限元分析结果与试验数据差别在10%以内,证明了有限元建模方法的合理性和正确性。  相似文献   

9.
为研究内置T肋方钢短柱在承受压弯荷载作用下的承载力与延性性能,建立了考虑初始几何缺陷和焊接残余应力的内置一字肋方钢短柱的三维弹塑性有限元分析模型,通过与既有研究结果比较,验证了有限元分析模型的准确性;采用参数化分析的方法对内置T肋方钢短柱的三维有限元模型进行分析,探究翼缘正则化宽厚比、加劲肋正则化长细比以及轴压比等参数对方钢短柱最大受弯承载力和极限应变的影响规律;基于参数化分析结果,提出了预测该类方钢短柱最大受弯承载力和极限应变的计算公式。研究结果表明,随着翼缘正则化宽厚比、加劲肋正则化长细比与轴压比的减小,内置T肋方钢短柱的最大受弯承载力与延性性能得到提升。  相似文献   

10.
设计了9个冷弯薄壁C型钢组合柱,进行单调加载试验,对其破坏模式和稳定承载力进行分析,试验参数为长细比、偏心距、节点板厚度与节点板间距.试验结果表明,试件的最终破坏模式为试件整体在弯矩作用平面内的弯曲失稳,以及试件受压侧翼缘和腹板的局部屈曲.长细比、偏心率是影响试件的承载力和刚度变化的主要因素,节点板间距和节点板厚度的影响有限.  相似文献   

11.
提出了波形钢板钢管混凝土柱的有限元分析方法,采用正交异性板来模拟波形钢板。应用ANSYS通用程序对算例进行了分析,并应用有限元方法分析了偏心率、长细比2个主要参数对波形钢板钢管混凝土柱极限承载力的影响。结果表明:可采用稳定折减系数和偏心率折减系数相乘的计算公式来考虑二者对波形钢板钢管混凝土柱极限承载力的影响,其中偏心率折减系数可采用《钢管混凝土结构设计与施工规程))(CECS28:90)的计算公式;稳定折减系数应将换算长细比乘以考虑柱肢的钢材型号和混凝土强度等级的材料修正系数,然后采用《钢管混凝土结构设计与施工规程》(JCJ01—89)的稳定系数计算方法。  相似文献   

12.
本文将梯形波纹钢板引入PEC柱中,提出一种新型的PEC柱截面形式,这种截面形式可以克服平腹钢板面外刚度较低,容易屈曲且与混凝土粘结较弱的特点。为研究其轴压承载性能,设计并完成了5根不同长细比和不同横向系杆间距的竖向梯形波纹腹板PEC柱轴压试验,得到了其在轴压作用下的破坏形态、荷载-位移关系曲线、荷载-应变关系曲线等。通过试验研究表明,所有柱的破坏失效模式具有相似性,都表现为翼缘鼓曲和混凝土压碎失效。同时由横向系杆、翼缘、波纹腹板组成的约束形式能够较好的约束混凝土,提高其抗压强度,增强构件延性,提高变形能力。随着长细比增加,试件的初始刚度、峰值承载力均有所降低,但峰值后变形能力增强,延性较好。随着横向系杆间距的减小,试件的初始刚度、峰值荷载和延性系数均增大,试件具有更优越的轴心抗压性能。将有限元模拟结果与试验结果进行对比,在验证模型有效性的基础上,参考国内外相关规范,结合试验结果和有限元拓展分析结果,利用叠加原理拟合得到了适用于本文的竖向梯形波纹腹板PEC柱在轴心受压状态下的承载力计算公式。公式计算结果可靠度较高,且具有一定的安全储备,可为实际施工设计提供参考建议。  相似文献   

13.
波形钢腹板组合梁抗震性能试验   总被引:2,自引:1,他引:1  
为探讨波形钢腹板内衬混凝土和焊接加劲肋的两种构造波形钢腹板组合梁抗震性能,通过剪跨比为1.67的波形钢腹板组合梁缩尺模型拟静力加载试验,比较分析了破坏特点、滞回曲线、承载力、延性、强度与刚度退化、耗能能力、变形恢复能力等基本力学特性.研究结果表明:钢腹板内衬混凝土和焊接加劲肋的波形钢腹板组合梁分别为弯剪和剪切破坏,腹板分别发生局部屈曲和整体屈曲,混凝土板根部均产生剪切斜裂缝;内衬混凝土相比焊接加劲肋的波形钢腹板组合梁的承载力、延性和耗能能力较高;两种构造均可提高腹板稳定性,滞回曲线形状相对饱满,强度退化系数均大于0.9,粘滞阻尼系数大于0.2,残余变形率小于0.61,表明两种构造的波形钢腹板组合梁强度退化不明显,耗能能力和变形恢复能力较强.  相似文献   

14.
建立了考虑材料、几何和接触非线性的有限元模型,在对冷弯薄壁型钢四肢拼合截面立枉的轴压性能试验试件进行模拟分析,验证有限元方法正确性的基础上,对考虑长细比、截面翼缘宽厚比等因素的一系列试件进行了数值分析,并得到其轴压承载力。在相关规范“有效宽度法”和“直接强度法”的基础上,提出了冷弯薄壁型钢四肢拼合截面立柱轴压承载力的设计方法:有效计算长度法和修正系数法。研究结果表明:试件最终破坏均呈现局部屈曲和畸变屈曲的破坏模式;在未考虑计算长度系数折减的情况下,当长细比小于50时,各规范公式计算值均略低于试验值和有限元值,吻合较好,当长细比大于50时,公式计算结果过于保守。  相似文献   

15.
对格构式钢管混凝土风力发电机塔架进行了非线性有限元静力分析,揭示了其受力全过程、破坏模式及极限承载力,考查了塔架宽高比、腹杆形式、塔柱径厚比以及腹杆与塔柱刚度比对塔架极限承载力和破坏模式的影响规律.有限元分析结果表明:塔架宽高比λ、塔柱径厚比γ及腹杆与塔柱刚度比β对塔架极限承载力和破坏模式的影响较大,腹杆形式对塔架极限承载力和破坏模式影响很小.随着塔架宽高比λ的增加,塔柱径厚比γ的减小,腹杆与塔柱刚度比β的增加,塔架的极限承载力增加,塔架的破坏模式由腹杆屈曲失稳向腹杆屈曲与受拉塔柱屈服联合破坏转变.本文建议:在设计风力发电机塔架时,塔架宽高比λ宜控制在1/9;底层腹杆形式宜采用再分式,以上各层可采用其他形式;塔柱径厚比宜小于30,腹杆与塔柱刚度比β宜小于0.05,以避免塔柱先于腹杆发生破坏.本文分析结果可为工程设计提供依据.  相似文献   

16.
为研究新型双箱型空腹圆弧钢拱的平面内稳定特性,采用理论推导与有限元数值模拟相结合的方法,研究其平面内弹性屈曲及弹塑性稳定承载力,分析剪力对拱截面破坏模式的影响,并建立了平面内稳定承载力的设计方法。首先,根据拱截面的剪力分布情况,研究了双箱型空腹圆弧钢拱截面整体剪切变形及弦腹杆剪切变形对平面内弹性屈曲的影响;推导出了考虑双剪切变形影响时,双箱型空腹圆弧钢拱的纯压弹性屈曲荷载公式。然后,参考轴心受压柱设计原理,引入稳定系数及正则化长细比,绘制了纯压状态下的稳定曲线。最后,分析了在几种常见荷载工况下,双箱型空腹圆弧钢拱整体破坏模式的稳定承载力设计公式。本文分析的拱结构新颖,所提弹性屈曲荷载公式计算结果与有限元分析结果十分吻合,同时采用轴力与弯矩的二项式验算了整体稳定承载能力。研究结果可供日后科研和实际工程设计参考,具有一定的现实意义。  相似文献   

17.
单边连接高强单角钢压杆试验研究和仿真分析   总被引:3,自引:2,他引:1  
为了研究单边连接高强角钢在输电铁塔中的受力性能,以48根Q460高强角钢为研究对象,对高强角钢双向压弯受力性能进行了静力加载试验研究.研究了压杆不同长细比时高强角钢的破坏模式、承载力、变形性能、截面应变分布等受力状态.试验表明,构件绕连接肢发生弯曲变形,同时伴有绕角钢纵轴的扭转变形,小长细比试件大多为局部屈曲,大长细比试件为整体屈曲.有限元数值模拟了实际试件的受力性能,结果表明:有限元分析的极限承载力结果偏大,美国ASCE规范值偏于保守,试验值处于美国规范值和有限元分析值之间,且靠近于有限元值.在模型试验和仿真试验的基础上,提出了单边连接高强角钢等效长细比公式.因此,试验结果可以为Q460高强角钢设计提供依据.  相似文献   

18.
提出梯形波纹腹板H型钢梁翼缘局部失稳的理论计算模型,指出波纹腹板对翼缘失稳相当于提供绕腹板轴心线的弹性转动约束作用.根据边界条件假设,采用理论推导得到了翼缘局部弹性屈曲应力的三角级数解,利用有限元分析验证了边界条件假设及理论模型的有效性.指出相比于平腹板,波纹腹板对翼缘具有更强的约束作用.  相似文献   

19.
装配式H型钢腹板开孔耗能支撑是由腹板开孔H型钢和传力槽钢通过螺栓连接组成的新型耗能支撑,能有效避免支撑构件失稳。为研究这种支撑的耗能能力及破坏机理,对试件进行低周往复加载试验及有限元模拟分析。结果表明:装配式H型钢腹板开孔耗能支撑滞回曲线饱满,耗能能力强,变形能力好。在轴向荷载作用下,试件主要依靠开孔腹板孔间短柱进入塑性耗能,在加载过程中,孔间短柱端部为薄弱部位,首先进入塑性,并最先发生断裂,随着加载的深入,孔间短柱中间部位进入塑性的面积越来越大。加载过程中,螺栓与槽钢始终处于弹性状态。试件最终因孔间短柱断裂导致破坏。H型钢耗能腹板长度相同时,腹板宽度越宽、孔间短柱高宽比越大,耗能支撑承载力与刚度越小、变形能力越好,孔间短柱高宽比在5~8之间较合理。建议长圆孔端部圆弧到螺栓孔中心最短距离控制在1.2d0~1.5d0之间。改变长圆孔圆弧半径对支撑的力学性能影响很小。H型钢腹板宽度相同时,腹板长度越大,承载力与刚度越大。给出了装配式H型钢腹板开孔耗能支撑的设计方法与极限承载力公式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号