首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The gas diffusion layer (GDL) is composed of a substrate and a micro-porous layer (MPL), and is treated with polytetrafluoroethylene (PTFE) to promote water discharge. Additionally, the MPL mainly consists of carbon black and PTFE. In other words, the optimal design of these elements has a dominant effect on the polymer electrolyte membrane fuel cell (PEMFC) performance. For the GDL, it is crucial to prevent water flooding, and the water flux within the GDL is strongly affected by the capillary pressure gradient. In this study, the PEMFC performance was systematically investigated by varying the substrate PTFE content, MPL PTFE content, and MPL carbon loading per unit area. The effects of each experimental variable on the PEMFC performance and especially on the capillary pressure gradient were quantitatively analyzed when the GDLs were manufactured by the doctor blade manufacturing method. The experimental results indicated that as the PTFE content of the anode and cathode GDL increased, the PEMFC performance deteriorated due to the deformation of the porosity and tortuosity of the GDL. Additionally, the PEMFC performance improved as the MPL PTFE content of the cathode GDL increased at low relative humidity (RH), but the PEMFC performance tendency was reversed at high RH. Further, the MPL carbon loading of 2 mg/cm2 demonstrated the best performance, and the advantages and disadvantages of the MPL carbon loading were identified. In addition, the effects of each experimental variable on liquid water, water vapor, and gas permeability were investigated.  相似文献   

2.
This study focused on novel cathode structures to increase power generation and organic substrate removal in microbial fuel cells (MFCs). Three types of cathode structures, including two-layer (gas diffusion layer (GDL) and catalyst layer (CL)), three-layer (GDL, micro porous layer (MPL) and CL), and multi-layer (GDL, CL, carbon based layer (CBL) and hydrophobic layers) structures were examined and compared in single-chamber MFCs (SCMFCs). The results showed that the three-layer (3L) cathode structures had lower water loss than other cathodes and had a high power density (501 mW/m2). The MPL in the 3L cathode structure prevented biofilm penetration into the cathode structure, which facilitated the oxygen reduction reaction (ORR) at the cathode. The SCMFCs with the 3L cathodes had a low ohmic resistance (Rohmic: 26-34 Ω) and a high cathode open circuit potential (OCP: 191 mV). The organic substrate removal efficiency (71-78%) in the SCMFCs with 3L cathodes was higher than the SCMFCs with two-layer and multi-layer cathodes (49-68%). This study demonstrated that inserting the MPL between CL and GDL substantially enhanced the overall electrical conduction, power generation and organic substrate removal in MFCs by reducing water loss and preventing biofilm infiltration into the cathode structure.  相似文献   

3.
In this study, a gas diffusion layer (GDL) was modified to improve the water management ability of a proton exchange membrane fuel cell (PEMFC). We developed a novel hydrophobic/hydrophilic double micro porous layer (MPL) that was coated on a gas diffusion backing layer (GDBL). The water management properties, vapor and water permeability, of the GDL were measured and the performance of single cells was evaluated under two different humidification conditions, R.H. 100% and 50%. The modified GDL, which contained a hydrophilic MPL in the middle of the GDL and a hydrophobic MPL on the surface, performed better than the conventional GDL, which contained only a single hydrophobic MPL, regardless of humidity, where the performance of the single cell was significantly improved under the low humidification condition. The hydrophilic MPL, which was in the middle of the modified GDL, was shown to act as an internal humidifier due to its water absorption ability as assessed by measuring the vapor and water permeability of this layer.  相似文献   

4.
A numerical study about in-plane porosity and contact angle gradient effects of cathode gas diffusion layer (GDL) on polymer electrolyte membrane fuel cell (PEMFC) under low humidity condition below 50% relative humidity is performed in this work. Firstly, a numerical model for a fuel cell is developed, which considers mass transfer, electrochemical reaction, and water saturation in cathode GDL. For water saturation in cathode GDL, porosity and contact angle of GDL are also considered in developing the model. Secondly, current density distribution in PEMFC with uniform cathode GDL is scrutinized to design the gradient cathode GDL. Finally, current density distributions in PEMFC with gradient cathode GDL and uniform cathode GDL are compared. At the gas inlet side, the current density is higher in GDL with a gradient than GDL with high porosity and large contact angle. At the outlet side, the current density is higher in GDL with a gradient than GDL with low porosity and small contact angle. As a result, gradient cathode GDL increases the maximum power by 9% than GDL with low porosity and small contact angle. Moreover, gradient cathode GDL uniformizes the current density distribution by 4% than GDL with high porosity and large contact angle.  相似文献   

5.
6.
In this study, a fractal model is developed to predict the permeability and liquid water relative permeability of the GDL (TGP-H-120 carbon paper) in proton exchange membrane fuel cells (PEMFCs), based on the micrographs (by SEM, i.e. scanning electron microscope) of the TGP-H-120. Pore size distribution (PSD), maximum pore size, porosity, diameter of the carbon fiber, pore tortuosity, area dimension, hydrophilicity or hydrophobicity, the thickness of GDL and saturation are involved in this model. The model was validated by comparison between the predicted results and experimental data. The results indicate that the water relative permeability in the hydrophobicity case is much higher than in the hydrophilicity case. So, a hydrophobic carbon paper is preferred for efficient removal of liquid water from the cathode of PEMFCs.  相似文献   

7.
A gas diffusion layer (GDL) facilitates the diffusion of reactant gas and the discharge of the generated water. The GDL performs various functions, such as conducting heat and electrons generated by electrochemical reactions and providing mechanical support for the catalyst layer. In this study, the effects of ratio variation in the substrate and microporous layer (MPL) penetration region on the proton exchange membrane fuel cell (PEMFC) performance were investigated. Furthermore, the reasons for these performance tendencies are explained based on the thermogravimetric analysis, contact angle, scanning electron microscopy, mercury porosimetry, electrical resistance, electrochemical impedance spectroscopy, and capillary pressure gradient. The experimental results indicate that the MPL penetration ratio within 15–20% of the total GDL thickness and the combined ratio of the MPL and MPL penetration within 35–40% is the best for the overall PEMFC performance. In addition, when the substrate ratio is excessively low, water flooding substantially occurs in the substrate, and this accumulated water functions as a back pressure, causing severe capillary condensation in the MPL penetration region and thus depriving the supply of the reactant gas.  相似文献   

8.
A multi-dimensional two-phase PEM fuel cell model, which is capable of handling the liquid water transport across different porous materials, including the catalyst layer (CL), the micro-porous layer (MPL), and the macro-porous gas diffusion medium (GDM), has been developed and applied in this paper for studying the liquid water transport phenomena with consideration of the MPL. Numerical simulations show that the liquid water saturation would maintain the highest value inside the catalyst layer while it possesses the lowest value inside the MPL, a trend consistent qualitatively with the high-resolution neutron imaging data. The present multi-dimensional model can clearly distinguish the different effects of the current-collecting land and the gas channel on the liquid water transport and distribution inside a PEM fuel cell, a feature lacking in the existing one-dimensional models. Numerical results indicate that the MPL would serve as a barrier for the liquid water transport on the cathode side of a PEM fuel cell.  相似文献   

9.
Carbon fiber cloth based on PAN (polyacrylonitrile) material was woven and fabricated into the gas diffusion layer (GDL) for PEMFC applications. This paper describes the newly developed carbon cloth as GDL and proves its feasibility for PEMFC. Such carbon cloth based GDLs have performance equal to that of conventional carbon papers verified using the standard test instrument. The mechanical tests show that as a supporting base, carbon cloth is more practical than carbon paper because of its superior compressibility, elasticity, and flexibility performance, making it more appropriate for ongoing manufacturing and assembly processes. Furthermore, even though carbon paper is structurally flatter and smoother than carbon cloth, the discharge curves of both substrates coated with a MPL (micro-porous layer) showed similar current density (around 750 mA/cm2) at 0.6 V. This indicates that the developed carbon cloth with MPL has achieved the required performance and provides an alternative selection from carbon paper as GDL.  相似文献   

10.
This study presents the benefit to an operating direct methanol fuel cell (DMFC) by coating a micro-porous layer (MPL) on the surface of anode gas diffusion layer (GDL). Taking the membrane electrode assembly (MEA) with and without the anodic MPL structure into account, the performances of the two types of MEA are evaluated by measuring the polarization curves together with the specific power density at a constant current density. Regarding the cell performances, the comparisons between the average power performances of the two different MEAs at low and high current density, various methanol concentrations and air flow rates are carried out by using the electrochemical impedance spectroscopy (EIS) technique. In contrast to conventional half cell EIS measurements, both the anode and cathode impedance spectra are measured in real-time during the discharge regime of the DMFC. As comparing each anode and cathode EIS between the two different MEAs, the influences of the anodic MPL on the anode and cathode reactions are systematically discussed and analyzed. Furthermore, the results are used to infer complete and reasonable interpretations of the combined effects caused by the anodic MPL on the full cell impedance, which correspond with the practical cell performance.  相似文献   

11.
Liquid water penetrating the gas diffusion layer (GDL) of a proton exchange membrane fuel cell (PEMFC) was studied. The gas diffuse layer (GDL) has a great impact on PEMFC's performanc3e, and is an important component of a PEMFC. An ex‐situ test was conducted on a transparent test cell to visualize the water droplet formation and detachment on the surface of different types of GDLs through a CCD camera. The breakthrough pressure, at which the liquid water penetrates the GDL and starts to form a droplet, was measured. The breakthrough pressure was found to be different for GDLs with different porosities and thicknesses. The equilibrium pressure, which is defined as the minimum pressure required for maintaining a constant flow through the GDL, was also recorded. The equilibrium pressure was found to be much lower than the breakthrough pressure for the same type of GDL. Also the drain performance using three kinds of different bipolar plates were compared in this paper. According to the result of experiment, the average diameters of porous GDLs were found determining the penetrating pressure. Serpentine flow channel proved the best pattern for drainage. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/htj.20330  相似文献   

12.
A numerical method is developed to study the effect of the compression deformation of the gas diffusion layer (GDL) on the performance of the proton exchange membrane fuel cell (PEMFC). The GDL compression deformation, caused by the clamping force, plays an important role in controlling the performance of PEMFC since the compression deformation affects the contact resistance, the GDL porosity distribution, and the cross-section area of the gas channel. In the present paper, finite element method (FEM) is used to first analyze the ohmic contact resistance between the bipolar plate and the GDL, the GDL deformation, and the GDL porosity distribution. Then, finite volume method is used to analyze the transport of the reactants and products. We investigate the effects of the GDL compression deformation, the ohmic contact resistivity, the air relative humidity, and the thickness of the catalyst layer (CL) on the performance of the PEMFC. The numerical results show that the fuel cell performance decreases with increasing compression deformation if the contact resistance is negligible, but an optimal compression deformation exists if the contact resistance is considerable.  相似文献   

13.
Understanding the thermal properties of the microporous layer (MPL) is critical for accurate thermal analysis and improving the performance of proton exchange membrane (PEM) fuel cells operating at high current densities. In this study, the effective through-plane thermal conductivity and contact resistance of the MPL have been investigated. Gas diffusion layer (GDL) samples, coated with 5%-wt. PTFE, with and without an MPL are measured using the guarded steady-state heat flow technique described in the ASTM standard E 1225-04. Thermal contact resistance of the MPL with the iron clamping surface was found to be negligible, owing to the high surface contact area. Effective thermal conductivity and thickness of the MPL remained constant for compression pressures up to 15 bar at 0.30 W/m°K and 55 μm, respectively. The effective thermal conductivity of the GDL substrate containing 5%-wt. PTFE varied from 0.30 to 0.56 W/m°K as compression was increased from 4 to 15 bar. As a result, GDL containing MPL had a lower effective thermal conductivity at high compression than the GDL without MPL. At low compression, differences were negligible. The constant thickness of the MPL suggests that the porosity, as well as heat and mass transport properties, remain independent of the inhomogeneous compression by the bipolar plate. Despite the low effective thermal conductivity of the MPL, thermal performance of the GDL can be improved by exploiting the excellent surface contact resistance of the MPL.  相似文献   

14.
High performance and efficiency are often reported in single-cell polymer electrolyte membrane (PEM) fuel cell (FC) experiments. This however, can reduce substantially when moving from single-cell experiments to multiple cells. Fuel cell performance is degraded for many reasons when adding cells, but; possibly the most important, is contact resistance between the bipolar plate and gas diffusion layer (GDL). Contact resistance is in direct relation to the clamping configuration and clamping pressure applied to a FC stack. Simulation of a single cell and 16-cell FC was performed at various clamping pressures resulting in detailed 3D plots of stress and deformation. The stress on the GDL, for any value of clamping pressure simulated in this study, is around 1.5 MPa for the 16-cell stack and around 4 MPa in single cell simulations. Experimental testing of clamping pressure effects was performed on a 16-cell stack by placing a thin pressure-sensitive film between GDL and bipolar plate. Clamping pressure was applied using various loads, durations, and two types of GDLs. The results from experimental testing show that pressure on the GDL is in the range of 0–2.5 MPa. When using rectangular cells, experimental results show nearly zero pressure in the center of each cell and the center cells of the stack, regardless of clamping method.  相似文献   

15.
Water management is one of the major issues hindering the employment of Polymer Electrolyte Membrane Fuel Cells on a large scale. Microporous layers are fundamental for water removal from the cathode, oxygen mass transfer and electrolyte hydration. In this paper, we have employed multiple carbon phases in the MPL composition to identify possible strategies for cell performance improvement at critical conditions such as high temperature and low relative humidity. In particular, we have employed a series of graphene-based particles, in addition to conventional carbon black, because of their excellent electrical and thermal conductivities. Moreover, mixed compositions have been tested to assess possible synergic effects between the two phases. We have determined which properties are responsible for performance improvements at 80 °C and relative humidity of 60% and how MPLs morphological and microstructural features could be tuned in order to increase mass transfer while preserving the electrolyte membrane hydration. Promising results have been obtained and specific morphological properties of graphene nanoplatelets have been identified for a possible optimization of the MPL, however the samples produced are still at an early-stage development and further improvements are needed.  相似文献   

16.
Water transport through the gas diffusion layer (GDL) is vital to proton exchange membrane fuel cells (PEMFCs), especially under flooding conditions. In this paper, a two-dimensional (2D) lattice Boltzmann method (LBM) is applied to reveal the water dynamic characteristics in GDL, and the computational domain is reconstructed based on the experiment. In-situ experiments, including I–V performance and electrochemical impedance spectroscopy (EIS) tests under flooding conditions, are carried out and analyzed. It is found that the porosity distribution inside the GDL is a crucial factor in water dynamic behavior research. The horizontal liquid water saturation (HSw) under the channel of real GDL (with porosity distribution) at 0.4 relative thickness are 3.2 times, 2.1 times and 3.4 times higher than the ideal GDL (without porosity distribution) in the case of 0.8 mm, 1.2 mm and 2.0 mm, respectively. The numerical simulation and experimental study show that water dynamic characteristics under the rib influence cell performance directly. In our LBM model, the GDL water distribution inconsistency (Varw) under 2.0 mm width rib is 43.1% and 28.0% higher than that under the 0.8 mm and 1.2 mm rib, respectively. With the rib wider from 0.8 mm to 2.0 mm, some parts of cell impedance such as Rmt, Rct, and Lmt increase 64.22%, 98.89%, and 47.46%, respectively. However, GDL under the channel shows no influence on water transport process.  相似文献   

17.
Improving reactant distribution is an important technological challenge in the design of a PEMFC. Flow field and the Gas Diffusion Layer (GDL) distribute the reactant over the catalyst area in a cell. Hence it is necessary to consider flow field and GDL together to improve their combined effectiveness. This paper describes a simple and unique off-cell experimental setup developed to determine pressure as a function of position in the active area, due to reactant flow in a fuel cell flow field. By virtue of the experimental setup being off-cell, reactant consumption, heat production, and water generation, are not accounted as experienced in a real fuel cell. A parallel channel flow field and a single serpentine flow field have been tested as flow distributors in the experimental setup developed. In addition, the interaction of gas diffusion layer with the flow distributor has also been studied. The gas diffusion layer was compressed to two different thicknesses and the impact of GDL compression on overall pressure drop and pressure distribution over the active area was obtained using the developed experimental setup. The results indicate that interaction of GDL with the flow field and the effect of GDL compression on overall pressure drop and pressure distribution is more significant for a serpentine flow field relative to a parallel channel flow field.  相似文献   

18.
Electrochemical losses as a function of the micro-porous layer (MPL) arrangement in Proton Exchange Membrane Fuel Cells (PEMFCs) are investigated by electrochemical impedance spectroscopy (EIS). Net water flux across the polymer membrane in PEMFCs is investigated for various arrangements of the MPL, namely with MPL on the cathode side alone, with MPL on both the cathode and the anode sides and without MPL. EIS and water transport are recorded for various operating conditions, such as the relative humidity of the hydrogen inlet and current density, in a PEMFC fed by fully-saturated air. The cell with an MPL on the cathode side alone has better performance than two other types of cells. Furthermore, the cell with an MPL on only the cathode increases the water flux from cathode to anode as compared to the cells with MPLs on both electrodes and cells without MPL. Oxygen-mass-transport resistances of cells in the presence of an MPL on the cathode are lower than the values for the other two cells, which indicates that the molar concentration of oxygen at the reaction surface of the catalyst layer is higher. This suggests that the MPL forces the liquid water from the cathode side to the anode side and decreases the liquid saturation in GDL at high current densities. Consequently, the MPL helps in maintaining the water content in the polymer membrane and decreases the cathode charge transfer and oxygen-mass transport resistances in PEMFCs, even when the hydrogen inlet has a low relative humidity.  相似文献   

19.
20.
It is well known that a micro-porous layer (MPL) plays a crucial role in the water management of polymer electrolyte fuel cells (PEFCs), and thereby, significantly stabilizes and improves cell performance. To ascertain the exact roles of MPLs, a numerical MPL model is developed in this study and incorporated with comprehensive, multi-dimensional, multi-phase fuel-cell models that have been devised earlier. The effects of different porous properties and liquid-entry pressures between an MPL and a gas diffusion layer (GDL) are examined via fully three-dimensional numerical simulations. First, when the differences in pore properties and wettability between the MPL and GDL are taken into account but the difference in the entry pressures is ignored, the numerical MPL model captures a discontinuity in liquid saturation at the GDL|MPL interface. The simulation does not, however, capture the beneficial effects of an MPL on cell performance, predicting even lower performance than in the case of no MPL. On the other hand, when a high liquid-entry pressure in an MPL is additionally considered, the numerical MPL model predicts a liquid-free MPL and successfully demonstrates the phenomenon that the high liquid-entry pressure of the MPL prevents any liquid water from entering the MPL. Consequently, it is found from the simulation results that a liquid-free MPL significantly enhances the back-flow of water across the membrane into the anode, which, in turn, helps to avoid membrane dehydration and alleviate the level of GDL flooding. As a result, the model successfully reports the beneficial effects of MPLs on PEFC performance and predicts higher performance in the presence of MPLs (e.g., an increase of 67 mV at 1.5 A cm−2). This study provides a fundamental explanation of the function of MPLs and quantifies the influence of their porous properties and the liquid-entry pressure on water transport and cell performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号