首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
乙烷质子交换膜燃料电池的研究   总被引:1,自引:0,他引:1  
研究了以乙烷作为燃料、全氟磺酸高分子膜(Nafion膜)作为质子交换膜、Pt或Pt-Ru作为电极催化剂主要组分、并通过掺杂Nafion膜作为电极内的离子导体构成的燃料电池电化学性能.研究了两种电极催化剂:Pt与Pt-Ru复合催化剂的制备及构成的单电池在不同温度及运行时间下的电化学性能.温度增加,电池性能变好;运行时间增加,电池性能下降,在相同的温度与运行时间下,Pt-Ru复合催化剂构成的电池比Pt催化剂构成的电池极化小.通过分析电极反应产物,探讨了乙烷电极及电池的反应机理.结构为C2H6,( Pt-Ru+膜材料复合阳极)/Nafion膜/(Pt+膜材料复合阴极),O2 的质子交换膜燃料电池,在150℃时,电池的最大输出电流和功率密度分别高达70 mA·cm-2和22 mW·cm-2.  相似文献   

2.
李微微  谢晓峰  王树博 《化工进展》2020,39(z2):168-174
以阳极催化剂(IrO2)、阴极催化剂(Pt/C)含量、阴极Nafion质量分数和阳极Nafion质量分数为考察的因素,进行了四因素三水平的正交试验,以电解槽电解电压在2V时的电流密度为衡量标准,确定了配置催化剂浆料的最优配比为:阳极催化剂IrO2担载量2.0mg/cm2,阴极催化剂Pt担载量1.0mg/cm2,阳极催化剂浆料中Nafion质量分数20%,阴极催化剂浆料中Nafion质量分数25%。使用最优配比配制催化剂后制备膜电极,对该膜电极进行极化曲线测试、产氢量计算及稳定性测试,发现运行80h后,膜电极的电解性能下降,在0.6A/cm2时,电解电压从1.78V升高到2.06V。使用交流阻抗分析稳定性测试前后的各部分电阻变化,发现各部分电阻均有增加。扫描电镜发现测试后阴极催化层与膜发生明显剥离。对稳定性测试期间的循环水进行电感耦合等离子体质谱(ICP-MS)测试,发现长时间运行后,水中Ir和Pt的含量增加。  相似文献   

3.
自呼吸式直接甲醇燃料电池性能及其传质特性   总被引:1,自引:1,他引:0  
针对有效面积为1 cm2的自呼吸式直接甲醇燃料电池(direct methanol fuel cell,DMFC)单电池,阳极采用燃料罐供液,将阴极侧集流体和夹具设计为一体式结构,并用自制的七合一膜电极组件对其进行测试,讨论了催化剂类型、扩散层材料、集流体结构等因素对其性能的影响,分析了电池内部的传质特性,优化了电池特别是其在中高电流密度条件下的性能。实验结果表明:采用Pt黑、Pt-Ru黑催化剂制作的自呼吸式DMFC能强化反应物的传质;采用碳布制作的膜电极更倾向于获得更高的极限电流密度;低电流密度时,因甲醇渗透电池电压随着甲醇浓度的增加而降低,但在中高电流密度下,电池性能随甲醇浓度的增大先升高后降低;平行集流体有利于阴阳极生成物的排出和反应物的传质,因此易获得较高的电池性能。  相似文献   

4.
《现代化工》2011,(Z1):381
本发明公开了一种直接甲醇燃料电池用膜电极的制备方法,属于直接甲醇燃料电池高效膜电极组件结构和制造技术领域。采用控温超声喷涂工艺制备膜电极中的催化层,以实现催化层的三维网络结构,增加催化剂暴露于三相界面的活性位点数量,为气液传输提供通道,再以憎水处理的碳布为扩散层、Nafion膜为质子交换膜、Pt黑和PtRu黑  相似文献   

5.
陈胜洲  王松青  林维明 《化工进展》2012,31(3):541-544,557
用FeCl3化学氧化法制备了PPy/Nafion改性膜,采用浸渍-还原法在PPy/Nafion阴极侧上沉积Co金属,制得Co-PPy/Nafion电解质膜。采用TG、CV及交流阻抗谱测试了Nafion膜及改性膜的热稳定性,质子电导性和甲醇渗透性能,结果表明:PPy/Nafion及Co-PPy/Nafion改性膜具有更好的热稳定性和抗甲醇渗透性。分别以Co-PPy/Nafion改性膜、PPy/Nafion改性膜和纯Nafion膜为电解质膜,PtRu/C为阳极催化剂,Pt/C为阴极催化剂组装DMFC并考察其性能。实验结果表明:Co-PPy/Nafion改性膜组装单电池在高浓度甲醇及大电流密度的测试条件下,表现出更优异的电池性能。  相似文献   

6.
采用共沉淀法和高温煅烧制备了AlMn复合氧化物、FeMn复合氧化物、ZnMn复合氧化物和BiSn复合氧化物,采用X射线衍射仪和扫描电子显微镜对产物的物相结构、形貌等进行了表征;并将4种复合氧化物作为铝–空气电池空气电极催化剂进行了恒流放电、循环伏安、交流阻抗、阴极极化测试。结果表明:所制备的4种复合氧化物形貌皆不同。除AlMn复合氧化物外,其他3种复合氧化物都具有较好的催化性能。FeMn复合氧化物组成的电极活性最差。用ZnMn复合氧化物制备的电池在20mA/cm~2的电流密度下电压平台高达1.46V,在100mA/cm~2电流密度下还能保持0.72V,相比其他3种复合氧化物其性能最佳。  相似文献   

7.
An.  W  高旭东 《绿箭信息》2000,1(8):1-6
与H2O2燃料电池类似,以水为阳极进料和氢源,在固体聚合物电极(SPE)反应器内进行了大豆油的电化学催化氢化。反应器的关键部件是膜电极组件(MEA),其由稀有金属黑阴极、RuO2粉末阳极、Nafion 117阳离子交换膜构成。SPE反应器在温度60℃、压力0.1MPa、阴极进料为工业用大豆油下进行分批循环操作。研究了可能影响油氢化电流效率的 各种因素,如阴极催化剂的类型、催化剂载量、阴极催化剂粘合剂用量、电流密度、反应物进料速率。发现用不同阴极催化剂时的电流效率顺序为:Pd>Pt>Rh>Ru>1r。用Pd黑阴极时,油氢化电流效率随电流密度的升高而降低,0.50A/cm^2时为70%,0.490A/cm^2时为25%。电流脉冲频率在0.25-60Hz时对电流效率没有影响。Pd和Pt阴极催化剂的最佳载量均为2.0mg/cm^2。只要粘合剂的总量不大于30%(质量分数,以干基催化剂为基准),大豆油氢化作用的电流效率就不会受到Nafion和PTFE阴极催化剂粘合剂的影响。当电流密度为0.100A/cm^2时,大豆油的进料速率由80mL/min升至300mL/min时,电流效率由60%升至70%。在进料管线上加镍丝网湍流促进器,进由速度为80mL/min时电流效率可高达70%。  相似文献   

8.
电解液的质量直接决定了全钒液流电池的储电能力。为了降低全钒液流电池的生产成本,在国内首次采用流动型电解槽电解还原法,研究了采用相对廉价的五氧化二钒(V2O5)代替价格昂贵的硫酸氧钒(VOSO4)为原料制备全钒液流电池电解液的制备技术;研究了阳极电极材料、电解电流密度等对制备电解液的影响因素;并通过循环伏安、交流阻抗和充放电测试分析和比较由两种原料制备的电解液的电化学性能。实验结果表明:以Ru Ir/Ti为阳极,多孔铅板为阴极,3 mol·L-1 H2SO4为阳极电解液,1.5 mol·L-1 V2O5+3 mol·L-1 H2SO4粉末混合溶液为阴极电解液,40 m A·cm-2恒流电解得到的电解液不但具有良好的电化学活性和可逆性,且电流效率高和电能损耗低,完全可以满足全钒液流电池的工作需求。  相似文献   

9.
采用化学氧化聚合法合成了以碳为载体的钴-聚吡咯(PPy)配合物Co-PPy-C,作为气体扩散电极的氧还原催化剂。利用极化曲线、交流阻抗、计时电流等电化学方法测试了其在碱性介质中(6 mol/L KOH)氧气气氛条件下氧还原的催化性能。电极电位在-0.20 V vs.Hg/HgO时,催化剂电流密度达到158 mA/cm2,显示出优越的氧还原电催化性能;采取催化层/集流体/气体扩散层的排布方式,以纯锌为负极,6 mol/L的KOH为电解液,将气体扩散电极与锌负极组装成锌-空气电池。电池以80 mA/cm2进行恒流放电,放电电压为1.0 V,且性能稳定。  相似文献   

10.
锂-空气电池是比能量最高的二次电池,已成为当今化学电源领域的研究热点。在锂-空气电池的各个组件中,空气电极的设计和制备是进一步提高锂-空气电池性能的关键。以简单的合成方法制备了一种具有高催化活性的镍酸镧(LaNiO3)催化剂,利用Super P作为催化剂载体制备了一种新型空气电极。实验结果表明,含有LaNiO3催化剂的锂-空气电池具有良好的充放电性能,放电电压平台为2.59 V,放电容量达到1 109 mAh·g-1。比较了2种碳材料(Super P和GNS)作为催化剂载体的空气电极对电池充放电性能的影响,发现多孔性的空气电极结构更有利于电池性能的提高。此外,还分析了控制电解液(1 mol·L-1 LiTFSI/TEGDME)中水含量的必要性。由Super P、LaNiO3及水含量小于1×10-5的电解液(1 mol·L-1 LiTFSI/TEGDME)组装成的锂-空气电池具有良好的循环性能,循环第五圈的容量保持率为96.21%,且不出现电压平台的明显变化。  相似文献   

11.
To reduce the effect of methanol permeated from the anode, the structure of the cathode was modified from a single layer with Pt black catalyst to two-layer with PtRh black and Pt black catalysts, respectively. The current density of the direct methanol fuel cell (DMFC) using the two-layer cathode was improved to 228 mA/cm-2 compared to that (180 mA/cm-2) of the DMFC using the single layer cathode at 0.3 V and 303 K. From the cyclic voltammograms (CVs), it is indicated that the amount of adsorbates on the metal catalyst in the two-layer cathode is less than that of adsorbates in the single layer cathode after methanol test. In addition, the adsorbates were removed very rapidly by electrochemical oxidation from the two-layer cathode. It is suggested fromex situ X-ray absorption near edge structure analysis that the d-electron vacancy of Pt atom in the two-layer cathode is not changed by the methanol test. Thus, Pt is not covered with the adsorbates, which agrees well with the results of CV.  相似文献   

12.
Lithium-air(also known as lithium-oxygen) batteries have attracted considerable global attention in recent years due to their extremely high energy density(11,140 W·h·kg~(-1)).The electrolyte is a key element in lithium-air batteries and the traditional organic electrolyte has great safety risk due to leakage.On the contrary,the polymer electrolyte has the advantages of high safety,high stability and easy processing comparing with the organic liquid electrolytes.In this paper,a new idea was proposed to coat the Nafion membrane on a layer of polymer for blocking the oxidation reduction electric(RM) and Li based on the selective permeability on lithium ion of the Nafion membrane.Self-made thicknesscontrollable Nafion membrane,polyvinylidene fluoride-hexafluoropropylene copolymer(PVDF-HFP)and 2,2,6,6-tetramethylpiperidinooxy(TEMPO) were used to prepare a quasi solid polymer electrolyte(NSPE).Electrochemical workstation and LAND battery testing system were used to perform a galvanostatic charge/discharge test on Li-O_2.The ionic conductivity of NSPE was 4.3 × 10~(-4) S·cm~(-1) at room temperature and the discharge platform was 2.6 V and the charging voltage was 3.7 V after 50 cycles with the cut-off capacity of 500 mA·h·g~(-1).  相似文献   

13.
J. Guo  H. Zhang  J. Jiang  Q. Huang  T. Yuan  H. Yang 《Fuel Cells》2013,13(6):1018-1023
A passive and self‐adaptive direct methanol fuel cell (DMFC) directly fed with 20 M of methanol is developed for a high energy density of the cell. By using a polypropylene based pervaporation film, methanol is supplied into the DMFC's anode in vapor form. The mass transport of methanol from the cartridge to the anodic catalyst layer can be controlled by varying the open ratio of the anodic bipolar plate and by tuning the hydrophobicity of anodic diffusion layer. An effective back diffusion of water from the cathode to the anode through Nafion film is carried out by using an additive microporous layer in the cathode that consists of 50 wt.% Teflon and KB‐600 carbon. Accordingly, the water back diffusion not only ensures the water requirement for the methanol oxidation reaction but also reduces water accumulation in the cathode and then avoids serious water flooding, thus improving the adaptability of the passive DMFC. Based on the optimized DMFC structure, a passive DMFC fed with 20 M methanol exhibits a peak power density of 42 mW cm–2 at 25 °C, and no obvious performance degradation after over 90 h continuous operation at a constant current density of 40 mA cm–2.  相似文献   

14.
The performance of a proton exchange membrane fuel cell (PEMFC) with gas diffusion cathodes having the catalyst layer applied directly onto Nafion membranes is investigated with the aim at characterizing the effects of the Nafion content, the catalyst loading in the electrode and also of the membrane thickness and gases pressures. At high current densities the best fuel cell performance was found for the electrode with 0.35 mg Nafion cm−2 (15 wt.%), while at low current densities the cell performance is better for higher Nafion contents. It is also observed that a decrease of the usual Pt loading in the catalyst layer from 0.4 to ca. 0.1 mg Pt cm−2 is possible, without introducing serious problems to the fuel cell performance. A decrease of the membrane thickness favors the fuel cell performance at all ranges of current densities. When pure oxygen is supplied to the cathode and for the thinner membranes there is a positive effect of the increase of the O2 pressure, which raises the fuel cell current densities to very high values (>4.0A cm−2, for Nafion 112—50 μm). This trend is not apparent for thicker membranes, for which there is a negligible effect of pressure at high current densities. For H2/air PEMFCs, the positive effect of pressure is seen even for thick membranes.  相似文献   

15.
The cathode catalyst layer in direct methanol fuel cells (DMFCs) features a large thickness and mass transport loss due to higher Pt loading, and therefore must be carefully designed to increase the performance. In this work, the effects of Nafion loading, porosity distribution, and macro-pores on electrochemical characteristics of a DMFC cathode CL have been studied with a macro-homogeneous model, to theoretically interpret the related experimental results. Transport properties in the cathode catalyst layers are correlated to both the composition and microstructure. The optimized ionomer weight fraction (22%) is found to be much smaller than that in H2 polymer electrolyte fuel cells, as a result of an optimum balance of proton transport and oxygen diffusion. Different porosity distributions in the cathode CLs are investigated and a stepwise distribution is found to give the best performance and oxygen concentration profile. Influence of pore defects in the CLs is discussed and the location of macro-pores is found to play a dual role in affecting both oxygen transport and proton conduction, hence the performance. The reaction zone is extended toward the membrane side and the proton conduction is facilitated when the macro-pores are near the gas diffusion layer.  相似文献   

16.
Using platinum (Pt) black and carbon-supported Pt (Pt/C) as cathode catalysts, membrane-electrode assemblies (MEAs) were fabricated with various Nafion ionomer content, and their direct formic acid fuel cell (DFAFC) performances were investigated. In MEAs incorporating Pt black catalysts, the current density at 0.6 V was highest at ionomer/catalyst volume ratio of 1.0, which was consistent with the electrochemical active area (EAS) variation measured by cyclic voltammetry. However, the current density measured at 0.3 V, the cell performance increased with Nafion ionomer content, especially at low ionomer loading, indicating that proton transport rate played an important role. The variation in ionic resistance (Rion) of cathode layers with Nafion ionomer content was experimentally confirmed by using the complex capacitance analysis of impedance data implemented with nitrogen (cathodes)/hydrogen (anodes) atmosphere. For Pt/C, the layer thickness and EAS of cathode were larger than those of MEA cathode using Pt black; and the current densities at 0.6 V were lower than those of Pt black, suggesting that smaller fraction of EAS was utilized.  相似文献   

17.
A direct methanol/oxygen solid polymer electrolyte fuel cell was demonstrated. This fuel cell employed a 4 mg cm–2 Pt-Ru alloy electrode as an anode, a 4 mg cm–2 Pt black electrode as a cathode and an acid-doped polybenzimidazole membrane as the solid polymer electrolyte. The fuel cell is designed to operate at elevated temperature (200°C) to enhance the reaction kinetics and depress the electrode poisoning, and reduce the methanol crossover. This fuel cell demonstrated a maximum power density about 0.1 W cm–2 in the current density range of 275–500 mA cm–2 at 200°C with atmospheric pressure feed of methanol/water mixture and oxygen. Generally, increasing operating temperature and water/methanol mole ratio improves cell performance mainly due to the decrease of the methanol crossover. Using air instead of the pure oxygen results in approximately 120 mV voltage loss within the current density range of 200–400 mA cm–2 .  相似文献   

18.
A physico-chemical investigation of catalyst–Nafion® electrolyte interface of a direct methanol fuel cell (DMFC), based on a Pt–Ru/C anode catalyst, was carried out by XRD, SEM-EDAX and TEM. No interaction between catalyst and electrolyte was detected and no significant interconnected network of Nafion micelles inside the composite catalyst layer was observed. The influence of some operating parameters on the performance of the DMFC was investigated. Optimal conditions were 2 M methanol, 5 atm cathode pressure and 2–3 atm anode pressure. Power densities of 110 and 160 mW cm−2 were obtained for operation with air and oxygen, respectively, at temperatures of 95–100°C and with 1 mg cm−2 Pt loading.  相似文献   

19.
A laboratory-scale intermediate-temperature H2S fuel cell with a configuration of H2S, (metal sulfide-based composite anode)/Li2SO4+Al2O3/(NiO-based composite cathode), air was developed and studied for production of power and for desulfurization of a fuel gas process stream. The cell was run at typical temperature (600-650℃) and ambient pressure, but its electrochemical performance may be limited by electrolyte membrane thickness. The membrane and its performance in cell have been characterized using scanning electron microscope (SEM) and electrochemical impedance spectrum (EIS) techniques. Composite anodes based on metal sulfides, Ag powder and electrolyte behaved well and stably in H2S stream, and composite cathodes based mainly on nickel oxide, Ag powder and electrolyte had superior performance to Pt catalyst. The maximum power density of up to 70mW.cm^-2 and current density of as high as 250mA.cm^-2 were obtained at 650℃. However, the long-term cell stability remains to be investigated.  相似文献   

20.
多孔气体扩散型氧阴极用于氯酸盐电化生产   总被引:1,自引:0,他引:1       下载免费PDF全文
衣宝廉  张恩浚 《化工学报》1993,44(6):658-665
简述了采用氧阴极代替铁阴极,以空气作退极化剂的电化生产氯酸盐平板压滤机式复极电解槽的结构与性能.当电极工作电流密度为100mA/cm~2时,电解槽的平均单池电压在2.000~2.200V之间;电解液中无需添加Na_2Cr_2O_7,电流效率可达90±2%,生产每吨NaClO_3的直流电耗为3700±100kw·h.电解槽运行稳定,单池电压分布均匀.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号