首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
How to improve the strength of fibrous porous ceramics dramatically under the premise of no sacrificing its low density and thermal conductivity has remained a challenge in the high-temperature thermal insulation field. In this paper, a new kind of high-strength mullite fiber-based ceramics composed of interlocked porous mullite fibers was prepared by nanoemulsion electrospinning and dry pressing method. Results show that as to the porous ceramics with the same density (~ 0.8 g/cm3), the three-dimensional skeleton structure composed of porous mullite fibers was much denser than that composed of solid mullite fibers. Therefore, porous mullite fiber-based ceramics exhibited a higher compressive strength (5.53 MPa) than that of solid mullite fiber-based ceramics (3.21 MPa). In addition, porous mullite fiber-based ceramics exhibited a superior high-temperature heat insulation property because the porous structure in fibers could reduce the radiant heat conduction. This work provides new insight into the development of high-temperature thermal insulators.  相似文献   

2.
Mullite fibrous porous ceramics is one of the most commonly used high temperature insulation materials. However, how to improve the strength of the mullite fibrous porous ceramics dramatically under the premise of no sacrificing the low sample density has always been a difficult scientific problem. In this study, the strategy of using mullite nanofibers to replace the mullite micron-fibers was proposed to fabricate the mullite nanofibrous porous ceramics by the gel-casting method. Results show that mullite nanofibrous porous ceramics present a much higher compressive strength (0.837 MPa) than that of mullite micron-fibrous porous ceramics (0.515 MPa) even when the density of the mullite nanofibrous porous ceramics (0.202 g/cm3) is only around three quarters of that of the mullite micron-fibrous porous ceramics (0.266 g/cm3). The obtained materials that present the best combination of mechanical and thermal properties can be regarded as potential high-temperature thermal insulators in various thermal protection systems.  相似文献   

3.
This work provides a novel and green approach to preparing porous forsterite ceramics by a transient liquid phase diffusion process based on fused magnesia and quartz powders without detrimental additives. The size of quartz particles markedly affected the sintering behaviors, phase composition, microstructure and properties of the porous forsterite ceramics. Fine quartz particles (D50, 3.87?µm) accelerated the rate of the forsterite formation at elevated temperatures and promoted solid-state sintering behavior of the porous ceramics. Conversely, coarse quartz particles (D50, 25.38?µm) reduced the rate of the solid state reaction and a large amount of unreacted SiO2 and enstatite (MgSiO3) phases transformed into a transient liquid-phase during the firing process. This effect resulted in a high porosity (approximately 58.89%) and formation of many large pores (mean pore size of 42.36?µm). These features contributed to the excellent thermal isolation properties of the prepared porous forsterite ceramics. The strength of the obtained porous ceramics (about 23.6?MPa) is relatively high compared with those of conventional ceramics.  相似文献   

4.
Hierarchically pore-structured porous diatomite ceramics containing 82.9∼84.5% porosity were successfully prepared for the first time via foam-gelcasting using diatomite powder as the main raw material. Sizes of mesopores derived from the raw material and macropores formed mainly from foaming were 0.02∼0.1 μm and 109.7∼130.5 μm, respectively. The effect of sintering temperature, additive content and solid loading of slurry on pore size and distribution, and mechanical and thermal properties of as-prepared porous ceramics were investigated. Compressive strength of as-prepared porous ceramics increased with sintering temperature, and the one containing 82.9% porosity showed the highest compressive strength of 2.1 ± 0.14 MPa. In addition, the one containing 84.5% porosity and having compressive strength of 1.1 ± 0.07 MPa showed the lowest thermal conductivity of 0.097 ± 0.001 W/(m·K) at a test temperature of 200 ̊C, suggesting that as-prepared porous ceramics could be potentially used as good thermal insulation materials.  相似文献   

5.
Thermal insulation applications of porous SiC ceramics require low thermal conductivity and high mechanical strength. However, low thermal conductivity and high mechanical strength possess a trade-off relationship, because improving the mechanical strength requires decreasing the porosity, which increases the thermal conductivity. In this study, we established a new strategy for improving both the mechanical strengths and thermal resistances of porous SiC ceramics with micron-sized pores by applying a double-layer coating with successively decreasing pore sizes (submicron- and nano-sized pores). This resulted in a unique gradient pore structure. The double-layer coating increased the flexural strengths and decreased the thermal conductivities of the porous SiC ceramics by 24–70 % and 29–49 % depending on the porosity (48–62 %), improving both their mechanical strengths and thermal resistances. This strategy may be applicable to other porous ceramics for thermal insulation applications.  相似文献   

6.
Vertical cracks are beneficial in thermal barrier coatings due to enhanced thermo-mechanical compliance. Accordingly, an aqueous nitrate based precursor solution was atomized on stainless steel substrates by spray pyrolysis to deposit thick crack-designed lanthanum zirconate coatings. Coatings with designed crack patterns were deposited and characterized by electron microscopy, tribology, Vickers indentation, and thermal diffusivity. The crystallization of the coatings was investigated by in situ high temperature X-ray diffraction. The green coatings crystallized from 600 °C and the pyrochlore structure was formed after heat treatment at 1000 °C. Crystalline lanthanum zirconate multilayered coatings with small crack spacing and crack opening exhibited a higher density, a higher hardness, lower thermal diffusivities, and higher thermal conductivities compared to crystalline monolayered coatings of similar thickness with large crack spacing and crack opening. The thermal diffusivity of the coatings, ∼28 mm2/s at room temperature, was similar to the values reported for yttria-stabilized zirconia plasma sprayed coatings.  相似文献   

7.
ABSTRACT

To further improve the thermal insulation performance of porous mullite ceramics used in important industrial sectors, a combined foam-gelcasting and pore-former addition approach was investigated in this work, by which hierarchical porous mullite ceramics with excellent properties, in particular, thermal insulation property, were prepared. Both mesopores (2–50?nm) and macropores (117.8–202.7?μm) were formed in porous mullite ceramics resultant from 2?h firing at 1300°C with various amounts of submicron-sized CaCO3 pore former. The former mainly arose from the decomposition of CaCO3, and the latter from the foam-gelcasting process. The porous samples prepared with CaCO3 addition had low linear shrinkage of 2.35–4.83%, high porosity of 72.98–79.07% and high compressive strength of 5.52–14.82?MPa. Most importantly, they also exhibited a very low thermal-conductivity, e.g. 0.114?W?m?1?K?1 at 200°C, which was much lower than in the cases of their counterparts prepared via the conventional foam-gelcasting route.  相似文献   

8.
Silica-bonded porous nano-SiC ceramics with extremely low thermal conductivity were prepared by sintering nano-SiC powder-carbon black template compacts at 600–1200 °C for 2 h in air. The microstructure of the silica-bonded porous nano-SiC ceramics consisted of SiC core/silica shell particles, a silica bonding phase, and hierarchical (meso/macro) pores. The porosity and thermal conductivity of the silica-bonded porous nano-SiC ceramics can be controlled in the ranges of 8.5–70.2 % and 0.057–2.575 Wm−1 K−1, respectively, by adjusting both, the sintering temperature and template content. Silica-bonded porous nano-SiC ceramics with extremely low thermal conductivity (0.057 Wm−1 K−1) were developed at a very low processing temperature (600 °C). The typical porosity, average pore size, compressive strength, and specific compressive strength of the porous nano-SiC ceramics were ∼70 %, 50 nm, 2.5 MPa, and 2.7 MPa·cm3/g, respectively. The silica-bonded porous nano-SiC ceramics were thermally stable up to 1000 °C in both air and argon atmospheres.  相似文献   

9.
《Ceramics International》2022,48(18):26400-26407
The high-entropy rare earth zirconate (La1/5Nd1/5Sm1/5Gd1/5Yb1/5)2Zr2O7 porous ceramics ((5RE1/5)2Zr2O7 PCs) were prepared using a foam-gel casting-freeze drying method combined with segmented calcination process. The results of SEM, TEM, and XRD analyses of the (5RE1/5)2Zr2O7 PCs indicated the formation of a defective fluorite crystal structure, with the rare earth elements homogeneously distributed. Meanwhile, the as-prepared (5RE1/5)2Zr2O7 PCs exhibited high porosity, low bulk density, low thermal conductivity, and relatively high compressive strength. Moreover, the high-temperature thermal conductivity of the samples was evaluated, and the results showed that the (5RE1/5)2Zr2O7 PCs maintain a thermal conductivity of 0.150 ± 0.002 W m?1 K?1 even at 1000 °C. The strategy used in this paper can be extended to the synthesis of other high-entropy porous ceramics with high porosity and low thermal conductivity, which is suitable for applications as thermal insulation materials.  相似文献   

10.
Calcium–magnesium–alumina–silicate (CMAS) corrosion resistance is an important issue on the design of next-generation thermal battier coatings. As one of the promising thermal battier coatings, the lanthanum zirconate coating has attracted continuous attention. In this work, three lanthanum zirconate coatings with different La/Zr composition, i.e., La1.8Zr2.2O7.1, La2Zr2O7, and La2.5Zr1.5O6.75, are fabricated by laser-enhanced chemical vapour deposition, and their resistance to CMAS corrosion at 1250?°C is investigated. Among them, La2.5Zr1.5O6.75 shows the best CMAS corrosion resistance because increased La content is beneficial to the formation of a dense and continuous apatite Ca2La8(SiO4)6O2 layer, which effectively slows down the subsequent molten CMAS penetration. This study clarifies the significant role of rare earth on CMAS corrosion resistance and is expected to guide the future design of rare-earth-based thermal battier coatings through composition tailoring.  相似文献   

11.
《Ceramics International》2016,42(7):8221-8228
In the present work, carbon black (CB) works as a pore-forming agent in the preparation of alumina porous ceramics. The pore structures (i.e. mean pore size, pore size distribution and various pores size proportions) were characterized by means of Micro-image Analysis and Process System (MIAPS) software and mercury intrusion porosimetry. Then their correlation and thermal conductivity as well as strength were determined using grey relation theory. The results showed that the porosity and mean pore size increased against the amount of CB, whereas the thermal conductivity, cold crushing strength and cold modulus of rupture reduced. The <2 μm pores were helpful for enhancing the strength and decreasing the thermal conductivity whereas the >14 μm pores had the opposite effects.  相似文献   

12.
The effects of porosity on the electrical and thermal conductivities of porous SiC ceramics, containing Y2O3–AlN additives, were investigated. The porosity of the porous SiC ceramic could be controlled in the range of 28–64 % by adjusting the sacrificial template (polymer microbead) content (0–30 wt%) and sintering temperature (1800–2000 °C). Both electrical and thermal conductivities of the porous SiC ceramics decreased, from 7.7 to 1.7 Ω−1 cm−1 and from 37.9 to 5.8 W/(m·K), respectively, with the increase in porosity from 30 to 63 %. The porous SiC ceramic with a coarser microstructure exhibited higher electrical and thermal conductivities than those of the ceramic with a finer microstructure at the equivalent porosity because of the smaller number of grain boundaries per unit volume. The decoupling of the electrical conductivity from the thermal conductivity was possible to some extent by adjusting the sintering temperature, i.e., microstructure, of the porous SiC ceramic.  相似文献   

13.
Porous mullite ceramics with an open/closed pore structure were prepared by protein foaming method combined with fly ash hollow spheres. Both the open porosity and total porosity of samples were enhanced by increasing the hollow sphere content. Mullite whiskers with a diameter of 0.2–4 μm were grown in-situ in the porous mullite ceramics with an AlF3 catalyst, conforming to a vapor-solid growth mechanism. The pore structure of the porous mullite ceramics was significantly affected by the mullite whiskers which increased the open porosity and total porosity. Moreover, the median pore size was reduced from 65.05 μm to 36.92 μm after the introduction of mullite whiskers. The flexural strength and the thermal conductivity of the samples decreased with increasing total porosity. The porosity dependence of the thermal conductivity was well described by the universal model, providing a reference for the prediction of thermal conductivity of porous ceramics with open/closed pores.  相似文献   

14.
Lanthanum zirconate is a promising thermal barrier coating material owing to its excellent thermophysical properties and La plays the key role in its corrosion resistance. Here, an amorphous precursor is used as raw feedstock material so as to synthesize lanthanum zirconate coatings with tailorable composition by atmospheric plasma spray (APS). Three lanthanum zirconate coatings of La1.7Zr2.3O7.15, La2.0Zr2.0O7.0 and La2.3Zr1.7O6.85 are fabricated. Furthermore, the corrosion resistance of the as-sprayed coatings against CaO-MgO-Al2O3-SiO2 at 1250℃ is investigated. The increased La content promotes the formation of a sealing layer of the crystalline Ca2La8(SiO4)6O2 apatite, which slows down the penetration of molten CaO-MgO-Al2O3-SiO2. Therefore, the infiltration rate of the La2.3Zr1.7O6.85 coating decreased up to 42.6 % compared with the other two coatings. This work develops a feasible preparation strategy to control the La composition for the improved corrosion resistance, which is expected to guide the future coating design and synthesis for the materials with big composition changes during the APS process.  相似文献   

15.
Aluminum borate porous ceramics are excellent candidates for high-temperature insulation applications. Current research on aluminum borate-based porous ceramics mainly focuses on porous ceramics made up of aluminum borate whiskers, whose low aspect ratio leads to a relatively dense porous structure; this results in porous ceramics with low porosity and relatively high thermal conductivity. In this study, we report the manufacturing of aluminum borate nanofibrous porous ceramics by an agar-based gel casting method using electrospun nanofibers with a high aspect ratio as the three-dimensional skeleton structure. We explored the effect of the alumina/boron oxide molar ratio on the microscopic morphology and crystal phase composition of the aluminum borate nanofibers and that of the sintering temperature on the micro and macro properties of porous ceramics based on the nanofibers. The results showed that aluminum borate nanofibers with an alumina/boron oxide molar ratio of 7:2 had the densest microscopic morphology, and the corresponding porous ceramics exhibited a higher porosity (91%) and lower thermal conductivity (0.11 W m?1 K?1) after sintering at 1200 °C than aluminum borate porous ceramics with aluminum borate whiskers as the skeleton. The successful synthesis of aluminum borate nanofibrous porous ceramics provides new insights into the development of high-temperature insulators.  相似文献   

16.
Lanthanum zirconate (LZO) ceramic foams with hierarchical pore structure were fabricated by particle-stabilized foaming method for the first time, and the as-prepared ceramics have high porosity of 90.7%-94.9%, low thermal conductivity, and relatively high compressive strength. The LZO powder was synthesized by solid-state method. The porosity of the ceramic foams was tailored by suspensions with different solid loadings (20-40 wt%). The sample with porosity of 94.9% has thermal conductivity of 0.073 W/(m·K) and compressive strength of 1.19 MPa, which exhibits outstanding property of thermal insulation and mechanical performance, indicating that LZO ceramic foam is a promising thermal insulation material in high temperature applications.  相似文献   

17.
《Ceramics International》2023,49(20):33247-33254
In this study, a series of porous ceramics were prepared using different ratios of small and large size MA hollow ceramic spheres as pore-forming agents, and their thermal insulation properties were investigated. The results showed that increasing the proportion of small size hollow ceramic spheres could effectively decrease the thermal conductivity and improve the compressive strength of the porous ceramics. The optimal porous ceramic was prepared with a ratio of 10∼50 of small and large size hollow ceramic spheres, which had a thermal conductivity of 0.368 W/(m·K) at 800 °C and a compressive strength of 22.43 MPa. Microscopic analysis indicated that the enhanced thermal insulation and mechanical properties were due to the improved pore structure and the enhanced bonding strength between the ceramic spheres and the matrix. The findings provide valuable insights for the development of high-performance thermal insulation materials.  相似文献   

18.
《应用陶瓷进展》2013,112(4):204-209
Porous mullite ceramics were prepared at 1300–1600°C for 2?h via a foam-gelcasting route using industrial-grade mullite powders as the main raw material, Isobam 104 as the dispersing and gelling agent, triethanolamine lauryl sulphate as the foaming agent and sodium carboxymethyl cellulose as the foam stabilising agent. The effects of firing temperature on the sintering behaviour of green samples as well as microstructures and properties of final porous mullite products were investigated. With increasing the temperature from 1300 to 1600°C, linear shrinkage and bulk density values of fired samples increased, whereas their porosity decreased. Mechanical strength and thermal conductivity values of fired samples decreased with increasing their porosities. Even at a porosity level as high as 79.4%, compressive and flexural strengths of fired samples (with average pore size of 314?μm) remained as high as 9.0 and 3.7?MPa, respectively, and their thermal conductivity (at 200°C) remained as low as 0.21?W?(m?1?K?1).  相似文献   

19.
The capillary and thermal performance of porous Si3N4 ceramics with nearly spherical pore structure has been investigated by altering the addition and diameter of pore-forming agent polymethyl methacrylate (PMMA) in this work. An exponential model is used to evaluate the liquid uptake capacity of porous Si3N4 ceramics. Porous Si3N4 ceramics fabricated by 5 μm PMMA with 40 wt.% addition possess the lowest capillary time constant and show the best capillary performance owing to the perfect balance between friction resistance and capillary force. The thermal conductivity of porous Si3N4 ceramics is significantly impacted by their porosity. Alexander model with an exponent of .96 is suitable for predicting the thermal conductivity of porous Si3N4 ceramics due to its R-squared up to .99. Moreover, with the addition and diameter of PMMA decrease, the flexural strength of porous Si3N4 ceramics increases. These results support the application of porous Si3N4 ceramics in the field of mass and heat transfer.  相似文献   

20.
叔丁醇基凝胶注模成型制备氧化铝多孔陶瓷   总被引:1,自引:0,他引:1  
以微米级Al2O3粉料为原料,叔丁醇为溶剂,采用凝胶注模成型工艺制备了氧化铝多孔陶瓷,并研究了Al2O3浆料的固相体积分数(分别为8%、10%、13%和15%)对1 500℃保温2 h烧后氧化铝多孔陶瓷的气孔率、气孔孔径分布、耐压强度、热导率和显微结构的影响.结果表明:当Al2O3浆料的固相体积分数从8%增加到15%时,氧化铝多孔陶瓷烧结体的总气孔率从71.2%逐渐降低至61.2%,气孔平均孔径从1.0 μm逐渐减小至0.78 μm,耐压强度从16.0 MPa逐渐增大至45.6 MPa,而热导率从1.03 W·(m·K)-1逐渐增大至1.83W·(m·K)-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号