首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
《Ceramics International》2016,42(11):12875-12879
Pb0.94−xLa0.04Srx[(Zr0.6Sn0.4)0.84Ti0.16]O3 (x=0,0.02,0.04,0.06) antiferroelectric ceramics were fabricated via conventional solid-state reaction. The increase of Sr content enhanced the stability of antiferroelectric phase, which resulted in the rise of phase transition fields and energy density. When x=0.06, the releasable energy density was 1.52 J/cm3 and the efficiency was 93.3% under 129 kV/cm. The pulsed discharge current was also measured to evaluate the energy release properties. Under 129 kV/cm, the obtained current density could be as high as 165.5 A/cm2. The pulsed discharge energy density was 1.21 J/cm3 and 90% of that could be released in less than 200 ns. The high energy density, high efficiency and fast energy release time indicate that the obtained AFE ceramics are very promising for pulsed power capacitors.  相似文献   

2.
(1-x)Sr0.7Pb0.15Bi0.1TiO3-xBi4Ti3O12 ((1-x)SPBT-xBIT, x = 0-0.125) bulk ceramics were developed and calcined via the solid-state method, aimed at the application of pulsed power capacitors. The phase structures, temperature stability, hysteresis loop, and discharge properties were systematically investigated. Considering both the temperature stability and dielectric properties, 0.925SPBT-0.075BIT bulk ceramics with a capacitance variation satisfying the X7R specification were developed for pulsed power capacitors. The energy storage density was 0.252 J/cm3, and the ceramics showed high temperature stability at 80 kV/cm. The discharge current waveforms of the 0.925SPBT-0.075BIT ceramics were recorded. A high discharge power density of approximately 1.01 × 108 W/kg with an 8 Ω load resistor and short discharge period of 84 ns were achieved at 50 kV/cm. The good temperature stability properties and high power density show that the 0.925SPBT-0.075BIT ceramics are well suited for pulsed power capacitors with a wide temperature range.  相似文献   

3.
Glass–ceramics capacitors have great application potential in pulsed power systems, due to ultrafast discharge speed and high dielectric breakdown strength (BDS). Here, lead-free niobate glass–ceramic dielectric materials were synthesized, and the effects of heat treatment temperature on the dielectric, ferroelectric, and energy storage properties of glass–ceramics were investigated comprehensively. The results exhibit that the dielectric permittivity first increases and then decreases as the crystallinity increases; however, the dielectric BDS diminishes. At the optimum crystallization temperature of 740°C, the maximum value of discharge energy density is 2.2 J/cm3 at 600 kV/cm, which is about 7.6 times that of mother glass. Furthermore, an ultrahigh power density of about 380.9 MW/cm3 and ultrafast discharge speed of about 11.2 ns were achieved simultaneously. Meanwhile, great thermal stability of charge–discharge property was verified in this glass–ceramics. According to PE loops and dielectric test result, a high dielectric constant (∼207) and low dielectric loss (<0.005) as well as high energy storage efficiency of about 94.9% were achieved for G740 sample. The previous results make the obtained glass–ceramic as potential candidates in dielectric capacitors.  相似文献   

4.
Capacitors are widely used as energy storage elements in electric vehicles (EVs) and pulsed power. At present, it is still challenging to develop capacitor dielectrics with good energy storage and discharge performance. In this work, antiferroelectric (AFE) ceramics (Pb0.94La0.04)[(Zr0.6Sn0.4)0.92Ti0.08]O3 with enhanced antiferroelectricity were fabricated by a rolling process. The obtained ceramics have a high recoverable energy density of 5.2 J/cm3 and an extremely high efficiency of 91.2% at 327 kV/cm. The ceramics have good energy storage and discharge performance in the temperature range from −40°C to 100°C due to the existence of AFE phase. An energy density of 3.7 J/cm3 can be released at 200 kV/cm in less than 500 ns and the discharge current keeps stable after 1000 charge-discharge cycles. By direct short experiment, a current density of 1657 A/cm2, which is the highest result in recently developed AFE ceramics, and a power density of 228 MW/cm3 were achieved. The possibility of using AFEs at low temperature was confirmed. The excellent energy storage and discharge performance prove the great potential of the obtained ceramics in high energy and power density applications.  相似文献   

5.
The effects of electric field‐induced phase transition on discharge properties of Pb0.94La0.04[(Zr0.52Sn0.48)0.84Ti0.16]O3 antiferroelectric (AFE) ceramics were investigated. Due to the forward phase transition, high polarization and energy density are achieved. The backward phase transition results in nonlinear increase of current in underdamped circuit. The stored charge (14.2 μC under 40 kV/cm at 22°C) can be released completely in very short duration due to the low remanent polarization. With increasing temperature, the polarization and releasable energy decline. However, the current amplitude reaches maximum at 40°C, which is attributed to the backward phase transition. The maximum current and power density are as high as 143.8 A/cm2 and 2.4 MW/cm3, which indicates the potential of the ceramics for pulsed capacitors.  相似文献   

6.
Multilayer pulsed power ceramic capacitors require that dielectric ceramics possess not only large recoverable energy storage density (Wrec) but also low sintering temperature (<950°C) for using the inexpensive metals as the electrodes. However, lead‐free bulk ceramics usually show low Wrec (<2 J/cm3) and high sintering temperature (>1150°C), limiting their applications in multilayer pulsed power ceramic capacitors. In this work, large Wrec (~4.02 J/cm3 at 400 kV/cm) and low sintering temperature (940°C) are simultaneously achieved in 0.9(K0.5Na0.5)NbO3–0.1Bi(Mg2/3Nb1/3)O3–1.0 mol% CuO ceramics prepared using transition liquid phase sintering. Wrec of 4.02 J/cm3 is 2‐3 times as large as the reported value of other (Bi0.5Na0.5)TiO3 and BaTiO3‐based lead‐free bulk ceramics. The results reveal that 0.9(K0.5Na0.5)NbO3–0.1Bi(Mg2/3Nb1/3)O3–1.0 mol% CuO ceramics are promising candidates for fabricating multilayer pulsed power ceramic capacitors.  相似文献   

7.
Dielectric capacitors have drawn increasing attention due to their fast charge/discharge rates and high power density. Among all known ceramic dielectric materials, antiferroelectrics are more attractive for their unique double ferroelectric hysteresis loops and higher energy densities. Here, a series of antiferroelectric ceramics x(0.95Bi0.5Na0.5TiO3-0.05SrZrO3)-(1-x)NaNbO3 (xBNTSZ-(1-x)NN, x = 0.23, 0.30, 0.35, 0.50) have been prepared. By stabilizing the antiferroelectric phase and postponing the critical electric field of the antiferroelectric-ferroelectric phase transition, an impressive discharge energy storage density of 4.08 J/cm3 at a breakdown strength of 370 kV/cm was achieved for the 0.35BNTSZ-0.65 N N. A superior comprehensive performance for the 0.50BNTSZ-0.50 N N ceramic with a discharge energy storage density (Wdis) of 3.78 J/cm3 and an efficiency of 86 % at an electric field strength of 320 kV/cm along with excellent frequency, temperature, and fatigue stabilities (fluctuations of Wdis≤±5% within 0.01∼100 Hz, Wdis≤10 % over 20∼140 °C, and Wdis≤1% over 106 cycle numbers) is realized. Furthermore, 0.50BNTSZ-0.50 N N ceramics simultaneously exhibit a high current density (622.5 A/cm2), high power density (112 MW/cm3), and fast discharge rate (t = 47 ns), all of which make it an excellent candidate for the pulsed power devices.  相似文献   

8.
Ferroelectric (1-x)Sr0.875Pb0.125TiO3-xBi(Mg0.5Zr0.5)O3 ((1-x)SPT-xBMZ, x = 0-0.2) ceramics with high discharge efficiency and power density were synthesized via a conventional solid-state sintering method. The prepared (1-x)SPT-xBMZ ceramics were detected as a pure perovskite structure and a dense microstructure, and a typical relaxor behavior and an excellent temperature stability were also observed. Although there is no direct correlation between the degree of diffuseness and the maximum polarization, the high degree of diffuseness can reduce the remanent polarization and significantly improve energy storage and release characteristics of ferroelectric ceramics. Based on a polarization electric-field loop measurement, a recoverable energy storage density of 0.762 J/cm3 and a very high efficiency of 96.34% are achieved when x = 0.2 under 150 kV/cm. The energy storage properties of 0.8SPT-0.2BMZ ceramic exhibit good temperature stability (25−130 °C) and frequency stability (2−80 Hz). In a practical charge-discharge circuit testing, a short discharge pulse-period about 94 ns, a high discharge energy density of 1.7 J/cm3 and an ultra-high-power density of 62.8 MW/cm3 are obtained for the 0.8SPT-0.2BMZ ceramic at 240 kV/cm. The results indicate that the 0.8SPT-0.2BMZ ceramic is a promising dielectric material for high-power pulse capacitors.  相似文献   

9.
《Ceramics International》2021,47(22):31229-31237
The dielectric capacitors with excellent energy storage characteristics, high power density and temperature stability are strongly desired in modern pulse power system and electronic industry. Thus, BKNAS-xPbO glass-ceramics were designed and prepared. Free oxygen in the glass phase which weakens the glass network structure can be adsorbed by trace Pb2+, thus improving the breakdown strength (BDS) of BKNAS glass-ceramics. Extremely high BDS (~2089 kV/cm) and excellent energy storage density (~17.62 J/cm3) were achieved in 0.6 mol% PbO doped BKNAS glass-ceramics. Moreover, the permittivity variance of BKNAS-0.6PbO glass-ceramics was less than 4.39% in the ultrawide temperature range (−80–300 °C), suggesting excellent temperature stability. The single layer capacitor made by BKNAS-0.6PbO glass-ceramics also exhibited excellent charge-discharge performance, in which the underdamped discharge power density reached 133.69 MW/cm3 as well as the overdamped discharge power density reached 146.89 MW/cm3 with ultrashort discharge time (<18 ns). The above results show that BKNAS-0.6PbO glass-ceramics possesses great potentiality for pulse capacitors owning to excellent energy storage property, temperature stability and charge-discharge performance.  相似文献   

10.
(Pb0.87Ba0.1La0.02)(Zr0.68Sn0.24Ti0.08)O3 (PBLZST) antiferroelectric (AFE) ceramics have been prepared by hot‐press sintering method and conventional solid‐state reaction process, and the dependence of microstructure and energy storage properties of the ceramics on sintering approaches has been studied. The results reveal that not only the microstructure, but also the electrical properties of the PBLZST AFE ceramics are significantly improved by using the hot‐press sintering method. Samples resulting from the hot‐press sintering process have high breakdown strength of 180 kV/cm which results from the increase of density. Coupled with large polarization, the hot‐pressed AFE ceramics are shown to have a high recoverable energy density of 3.2 J/cm3. The recoverable energy density of the hot‐pressed PBLZST AFE ceramics is 100% greater than the conventional sintered specimens with recoverable energy density of 1.6 J/cm3.  相似文献   

11.
Lead-free dielectric materials with high breakdown electric field strength and energy density are required for pulsed power devices with high level of integration. This work describes: (Ag0.94La0.02)(Nb1-xTax)O3 lead-free antiferroelectric ceramics, which were prepared by rolling process. Following composition engineering, an outstanding energy density of 6.9 J cm-3 at electric field of 490 kV cm-1 was achieved, coupled with remarkable frequency stability (<1% over 1-100 Hz under E = 420 kV cm-1) for (Ag0.94La0.02)(Nb0.80Ta0.20)O3 ceramics. Moreover, it also shows excellent charge-discharge properties (discharge density = 1429 A cm-2, power density = 144 MW cm-3). The addition of La3+ and Ta5+ induced a disordered local structure, which gradually decreased the phase transition temperature of M2-M3 to room temperature, reflecting the enhanced antiferroelectricity. All advantageous properties observed for the La and Ta co-doped AgNbO3 ceramics highlight their significant potential for energy storage applications.  相似文献   

12.
There are urgent demands for high performance capacitors with superior energy storage density and discharge performances. In this work, novel NaNbO3-based lead-free ceramics (0.91NaNbO3-0.09Bi(Zn0.5Ti0.5)O3) with high energy storage capability, high power density and fast discharge speed were designed and prepared. Bi(Zn0.5Ti0.5)O3 was chosen for the purpose to reduce the remnant polarization and improve the induced polarization. Consequently, a large stored energy storage density (Ws˜ 3.51 J/cm3) and high recoverable energy storage density (Wrec˜ 2.20 J/cm3) were obtained in 0.91NaNbO3-0.09Bi(Zn0.5Ti0.5)O3 ceramic under a high breakdown strength of 250 kV/cm, with excellent thermal stability in the range of 20–120 °C. More importantly, the investigated ceramics exhibited high power density (PD˜ 20 MW/cm3) and ultrafast discharge rate (t0.9˜ 0.25 μs), demonstrating potential application in pulse powehr systems. This work provides an effective means of achieving excellent energy storage and discharge performances in NaNbO3-based ceramics for application in dielectric capacitors.  相似文献   

13.
The applications of antiferroelectric (AFE) materials in miniaturized and integrated electronic devices are limited by their low energy density. To address the above issue, the antiferroelectricity of the reinforced material was designed to improve its AFE-ferroelectric (FE) phase transition under electric fields. In this present study, the composition of Zr4+ (0.72 Å) and Ti4+ (0.605 Å) at B-site of Pb0.97La0.02(ZrxSn0.05Ti0.95-x)O3 ceramics with orthogonal reflections are synthesized via the tape-casting method. These ceramics are modified to enhance their antiferroelectricity by reducing their tolerance factor. A recoverable energy storage density Wrec 12.1 J/cm3 was obtained for x = 0.93 under 376 kV/cm, which is superior value than reported until now in lead-based energy storage systems. Moreover, the discharge energy density can reach 10.23 J/cm3, and 90 % of which can be released within 5.66 μs. This work provides a new window and potential materials for further industrialization of pulse power capacitors.  相似文献   

14.
(1 − x)Bi0.5Na0.47Li0.03Ti0.99Sn0.01O3xSrTiO3 (BNLST–xST) lead-free ceramics were synthesized by traditional solid phase sintering. When x = 0.4, the ceramic achieves a high energy storage density Wrec of 3.78 J/cm3 as well as a superior efficiency η of 90.3% under 360 kV/cm. The charge–discharge curves related to temperature and cycle show that the 0.6BNLST–0.4ST sample has good temperature stability (20–180°C) and cycling reliability (variation of WD < 5%). Moreover, a fast discharge rate (t0.9 = 0.219 μs) and a large discharge energy density (WD = 1.89 J/cm3) are achieved at 220 kV/cm. The results show that BNLST–xST energy storage ceramics are promising materials for devices with pulsed power capacitor.  相似文献   

15.
《Ceramics International》2019,45(16):19895-19901
The low breakdown strength of BNT-based dielectric ceramics limits the increase in energy-storage density. In this study, we successfully reduced the sintering temperature of BNT-ST-5AN relaxor ferroelectric ceramics from 1150 to 980 °C by two-phase compounding with nano-SiO2. Meanwhile, the average grain size of the composite ceramics is also greatly reduced from 4.45 μm to 0.37 μm. Thus, a large recoverable energy-storage density (3.22 J/cm3) is achieved under the ultrahigh breakdown strength (316 kV/cm). Moreover, good temperature (25–150 °C) and frequency (10–200 Hz) stabilities are simultaneously achieved. The excellent energy-storage properties suggest that BNT-ST-based ceramics composited with SiO2 form a promising low-temperature sintered dielectric material for pulsed power multilayer ceramic capacitors.  相似文献   

16.
Linear dielectric ceramics have received much attention due to high power density, fast discharge speed and ultralow dielectric loss, which are expected as promising candidates for the pulsed power system applications. However, their relatively low dielectric breakdown strength usually cannot meet the requirements of practical application. In this work, we adopt hot-press sintering method to enhance the dielectric breakdown strength of the TiO2-SiO2-Al2O3 based ceramics, and the dielectric breakdown strength reaches 77.5 kV/mm, which is 1.8 times as large as samples prepared by conventional sintering method. The effect of different sintering methods on microstructure, dielectric properties and dielectric breakdown strength is investigated. The improvement of dielectric breakdown strength can be ascribed to improved bulk density, smaller grain size, and reduced reduction of Ti4+ to Ti3+, associated with the applied external pressure and lower sintering temperature. Eventually, large power density (18.20 MW/cm3) is obtained in pulse overdamped discharge circuit. Meanwhile, the stored energy is also released in a short time (about 11.3 ns to release 90% of saturated energy density value).  相似文献   

17.
Dielectric capacitors with decent energy storage and fast charge-discharge performances are essential in advanced pulsed power systems. In this study, novel ceramics (1-x)NaNbO3-xBi(Ni2/3Nb1/3)O3(xBNN, x = 0.05, 0.1, 0.15 and 0.20) with high energy storage capability, large power density and ultrafast discharge speed were designed and prepared. The impedance analysis proves that the introducing an appropriate amount of Bi(Ni0·5Nb0.5)O3 boosts the insulation ability, thus obtaining a high breakdown strength (Eb) of 440 kV/cm in xBNN ceramics. A high energy storage density (Wtotal) of 4.09 J/cm3, recoverable energy storage density (Wrec) of 3.31 J/cm3, and efficiency (η) of 80.9% were attained in the 0.15BNN ceramics. Furthermore, frequency and temperature stability (fluctuations of Wrec ≤ 0.4% over 5–100 Hz and Wrec ≤ 12.3% over 20–120 °C) were also observed. The 0.15BNN ceramics exhibited a large power density (19 MW/cm3) and ultrafast discharge time (~37 ns) over the range of ambient temperature to 120 °C. These enhanced performances may be attributed to the improved breakdown strength and relaxor behavior through the incorporation of BNN. In conclusion, these findings indicate that 0.15BNN ceramics may serve as promising materials for pulsed power systems.  相似文献   

18.
《Ceramics International》2023,49(20):33156-33167
Improving energy storage density and efficiency of antiferroelectric materials could promote their use within energy storage field, particularly in the context of pulsed power sources. In this study, Sm and Hf co-doped silver niobate (AgNbO3; AN) ceramics were prepared using traditional solid-state method. Comprehensive analysis of crystal structure, microstructure, defects, absorbance, and energy storage performance of the material was conducted. Results reveal that co-doping increased the concentration of cation vacancies and band gap, decreased the M1–M2 and M2–M3 phase transition temperatures, and enhanced the antiferroelectric phase stability and energy storage performance. The (Ag0.955Sm0.015)(Nb0.95Hf0.05)O3 ceramic exhibited energy storage density of 5.35 J/cm3 and energy storage efficiency of 73% at electric field (E) of 295 kV/cm, demonstrating significant improvement. The (Ag0.955Sm0.015)(Nb0.95Hf0.05)O3 ceramic exhibited excellent thermal stability (<5% in the range of 25 °C-125 °C) and frequency stability (<3% in the range of 1–100 Hz under E = 290 kV/cm). Additionally, the (Ag0.955Sm0.015)(Nb0.95Hf0.05)O3 ceramic exhibited ultrahigh discharge speed (∼18 μs) and high discharge energy density (4.9 J/cm3). These advantages make these ceramics promising materials for energy storage applications.  相似文献   

19.
Lead-free NaNbO3 (NN) antiferroelectric ceramics provide superior energy storage performance and good temperature/frequency stability, which are solid candidates for dielectric capacitors in high power/pulse electronic power systems. However, their conversion of the antiferroelectric P phase to the ferroelectric Q phase at room temperature is always accompanied with large remnant polarization (Pr), which significantly reduces their effective energy storage density and efficiency. In this study, to optimize the energy storage properties, short-range antiferroelectric (0.95-x)NaNbO3-xBi(Mg2/3Nb1/3)O3-0.05CaZrO3 (xBMN) ceramics were designed to stabilize the antiferroelectric phase, in which the local random fields were simultaneously constructed. The results showed that the antiferroelectric orthorhombic P phase was transformed into the R phase, and the local short-range random fields were generated, which effectively inhibited the hysteresis loss and Pr. Of great interest is that the 0.12BMN ceramics displayed a large recoverable energy storage density (Wrec) of 5.9 J/cm3 and high efficiency (η) of 85% at the breakdown strength (Eb) of 640 kV/cm. The material also showed good frequency stability in the frequency range of 2–300 Hz, excellent temperature stability in the temperature range of 20–110 ℃, and a very short discharge time (t0.9∼4.92 μs). These results indicate that xBMN ceramics have great potential for advanced energy storage capacitor applications.  相似文献   

20.
Lead free dielectric ceramics of 0.65Bi0.51Na0.47Ti1-5x/4NbxO3- 0.35Ba(Ti0.7Zr0.3)O3 (BB35-100xNb, x = 0.00, 0.01, 0.02, 0.04 and 0.08) are fabricated by conventional solid-state sintering method for potential energy storage applications. Benefited from the coexistence of relaxor and antiferroelectric features, a high recoverable energy storage density of 3.2 J/cm3, together with high energy efficiency of 93%, is simultaneously achieved in bulk BB35-1Nb ceramic at the critical electric field of 280 kV/cm. The studied BB35-1Nb ceramic exhibits a wide temperature usage range of 20–160 °C with energy density variation below 3%, and excellent cycling reliability with both energy density and efficiency variations less than 4% over 106 cycles, together with its fast discharge time of ˜1.2 μs, making BB35-1Nb ceramic promising candidate for high-temperature, high power energy storage applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号