首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Y2Si2O7 coatings were formed on Hi-Nicalon-S SiC fibers by reaction of solution-derived YPO4 coatings with glass SiO2 scales formed by fiber oxidation. Two oxidation methods were used: pre-oxidation, where fibers were oxidized prior to YPO4 coating, or post-oxidation, where fibers were first coated with YPO4 and then oxidized. Fibers with YPO4/SiO2 films were heat-treated in argon at 1200°C for 20 hours to react YPO4 and SiO2 to Y2Si2O7. The effects of SiO2 to YPO4 film thicknesses on fiber strength and on the Y2Si2O7formation kinetics were investigated. An optimized process to obtain single-phase continuous Y2Si2O7 coatings on Hi-Nicalon-S fibers with low loss in fiber strength is suggested.  相似文献   

2.
Hi‐Nicalon‐S/α‐Y2Si2O7/SiC minicomposites were formed by polymer infiltration pyrolysis (PIP) and characterized by TEM, SEM fractography, tensile testing, and fiber push‐in testing. All minicomposites with α‐Y2Si2O7 fiber coatings had strengths significantly higher than the control samples without fiber coatings. Extensive fiber pullout with debonding at the coating‐fiber interface or within the coating itself was observed in minicomposites with Y2Si2O7 fiber coatings, but no debonding was observed in minicomposites without fiber coatings. Debond energies of 4.5 ± 3, 4.6 ± 3 J/m2 and average sliding stresses of 91 ± 40, 94 ± 40 MPa were measured by fiber push‐in tests.  相似文献   

3.
It is shown using thermodynamic analysis and kinetic modeling that a processing window exists for the formation of Y2Si2O7 coatings on SiC. The proposed method is validated using an experimental procedure in which the in situ formation of Y2Si2O7 on a commercial SiC-based fiber is demonstrated. The method involves the deposition of YPO4 on preoxidized fine diameter SiC-based fibers, and heat treating the coated fibers within a calculated processing window of oxygen partial pressure, temperature, degree of preoxidation, and coating thickness. The results are promising for the development of environmentally resistant interfacial coatings for SiC-fiber reinforced SiC-based matrix composites. The proposed and validated approach allows a low-cost method to obtain continuous hermetic coatings on SiC fibers with interfacial properties adequate for tough composite behavior that resists degradation under turbine engine conditions.  相似文献   

4.
Interphase plays an important role in the mechanical behavior of SiC/SiC ceramic-matrix composites (CMCs). In this paper, the microstructure and tensile behavior of multilayered (BN/SiC)n coated SiC fiber and SiC/SiC minicomposites were investigated. The surface roughness of the original SiC fiber and SiC fiber deposited with multilayered (BN/SiC), (BN/SiC)2, and (BN/SiC)4 (BN/SiC)8 interphase was analyzed through the scanning electronic microscope (SEM) and atomic force microscope (AFM) and X-ray diffraction (XRD) analysis. Monotonic tensile experiments were conducted for original SiC fiber, SiC fiber with different multilayered (BN/SiC)n interfaces, and SiC/SiC minicomposites. Considering multiple damage mechanisms, e.g., matrix cracking, interface debonding, and fibers failure, a damage-based micromechanical constitutive model was developed to predict the tensile stress-strain response curves. Multiple damage parameters (e.g., matrix cracking stress, saturation matrix crack stress, tensile strength and failure strain, and composite’s tangent modulus) were used to characterize the tensile damage behavior in SiC/SiC minicomposites. Effects of multilayered interphase on the interface shear stress, fiber characteristic strength, tensile damage and fracture behavior, and strength distribution in SiC/SiC minicomposites were analyzed. The deposited multilayered (BN/SiC)n interphase protected the SiC fiber and increased the interface shear stress, fiber characteristic strength, leading to the higher matrix cracking stress, saturation matrix cracking stress, tensile strength and fracture strain.  相似文献   

5.
Rare‐earth disilicates (RE2Si2O7) are investigated for use as oxidation‐resistant alternatives to carbon or BN fiber–matrix interphases in ceramic matrix composites (CMC). Dense α, β, γ‐Y2Si2O7, and γ‐Ho2Si2O7 pellets were formed at 64 MPa and 1050°C–1200°C for 1 h using the field‐assisted sintering technique (FAST). Pellet modulus was measured using nanoindentation, and Vickers hardness was measured at loads of 100, 500, and 1000 g. The sliding stress of SCS‐0 SiC fibers incorporated in α‐, β‐, and γ‐RE2Si2O7 matrices were measured by fiber push‐out. Deformation of RE2Si2O7 after indentation and after fiber push‐out was characterized by TEM. Implications of the results for use of RE2Si2O7 as a fiber–matrix interphase in CMCs are discussed.  相似文献   

6.
《Ceramics International》2017,43(5):4166-4174
Unidirectional SiCf/SiC minicomposites with SiC matrix derived by polymer-impregnation pyrolysis (PIP), reinforced with SiC fibers coated with zirconium or hafnium germanate were fabricated. Microdebonding indentation tests for SiCf/SiC composites with one- and multilayered germanate interphase were performed. Interfacial shear stress depending on the number of germanate interfacial layers and morphology was determined. The microstructure of the minicomposites and indented fracture surfaces were studied by scanning electron microscopy (SEM). It was stated that an increase in the number of interfacial coatings leads to a decrease in the interfacial frictional stress in SiCf/SiC minicomposites with germanate interphases. The key factor of interphase weakening is the formation of a weak interlayer bonding within the interphase but not germanate layered crystal structure itself. Thus, bonding at the fiber/matrix boundary could be regulated by the number of layers of ZrGeO4 or HfGeO4 in the interphase zone.  相似文献   

7.
Y3Si2C2 ternary ceramics were in-situ grown on the third-generation Chinese commercial SiC fiber (KD-SA SiC fiber) surface via molten salt method. Microstructures and oxidation/corrosion behavior of in-situ grown Y3Si2C2 coated SiC fibers exposed to air and wet-oxygen at 1400 ℃ were investigated. Results indicated that the layered Y3Si2C2 slices with thickness of approximately 15 nm can be successfully in-situ grown on SiC fibers. The product on the fibers surface after oxidation/corrosion at 1400 ℃ for 1 h in both ambient air and wet-oxygen are Y2Si2O7 and SiO2. Moreover, microstructural characterization indicates that the immigration and expansion of gaseous bubbles induced by oxidation product, mainly CO, result in microstructural differences of SiC fiber specimens, and finally oxidation mechanism based on the microstructural difference were proposed.  相似文献   

8.
Single fiber-tow minicomposites represent the major load-bearing element of woven and laminate ceramic matrix composites (CMCs). To understand the effects of fiber type, fiber content, and matrix cracking on tensile creep in SiCf/SiC CMCs, single-tow SiCf/SiC minicomposites with different fiber types and contents were investigated. The minicomposites studied contained either Hi-Nicalon™ or Hi-Nicalon™ Type S SiC fibers with a boron nitride (BN) interphase and a chemical-vapor-infiltrated-silicon-carbide (CVI-SiC) matrix. Tensile creep was performed at 1200 °C in air. A bottom-up creep modeling approach was applied where creep parameters of the fibers and matrix were obtained separately at 1200 °C. Next, a theoretical model based on the rule of mixtures was derived to model the fiber and matrix creep-time-dependent stress redistribution. Fiber and matrix creep parameters, load transfer model results, and numerical modeling were used to construct a creep strain model to predict creep damage evolution of minicomposites with different fiber types and contents.  相似文献   

9.
BN interphases in SiC/SiC minicomposites were produced by infiltration of fibre tows from BF3–NH3–H2 gaseous system. During interphase one-step processing, the tow travels through a reactor containing a succession of different hot areas. By TEM characterization, the BN interphases were found to be made of a structural gradient: from isotropic to highly anisotropic. The very first coating is poorly organised and allows to protect the fibre from a further chemical attack by the reactant mixture. The minicomposites were tensile tested at room temperature with unloading-reloading cycles. The BN interphases act as mechanical fuses; the fibre/matrix bonding intensity ranges from weak to rather strong depending on the tow travelling rate during interphase infiltration. The specimen lifetimes at 700°C under a constant tensile loading were measured in dry and moist air. Compared to a pyrocarbon reference interphase, the BN interphases significantly improve the oxidation resistance of the SiC/SiC minicomposites.  相似文献   

10.
The poor wet-oxidation resistance limits the long-life service of SiCf/SiC composites as the hot end components of aero-engines. The stability of SiCf/SiC composites under high-temperature wet oxygen environment can be promoted by more robust SiC matrix. In this work, the effect of Y2O3 on the corrosion behaviors of SiC ceramics in flowing O2/H2O atmosphere at 1400 ℃ was studied. Duo to the continuous Y2Si2O7 layer formed on the surface, SiC-Y2O3 ceramics exhibit much better wet-oxidation resistance than original SiC ceramics. During the oxidation process, Y2O3 dispersed in the ceramics migrates to the surface and reacts with SiO2 to form β-Y2Si2O7. Subsequently, the β-Y2Si2O7 aggregates and grows to form a continuous Y2Si2O7 layer, inhibiting the corrosion from oxidizing medium to the inner SiC matrix. This study is expected to provide important ideas for the design and structure regulation of wet-oxidation resistant SiCf/SiC composites.  相似文献   

11.
Fiber coatings based on BN, BN/SiC and BN/Si3N4 were deposited on Hi Nicalon type S SiC fibers. The coating parameters were optimized using a design of experiments study. With optimized parameter sets, the coatings exhibited a high degree of coverage on the fibers and almost no fiber bridging could be observed. The coated fiber bundles are flexible and can be processed further by techniques such as filament winding. In comparison to a non-processed reference sample, the maximum tensile load of the fiber bundles with BN, BN/SiC and BN/Si3N4 coatings was reduced by only 5 %, 13 % and 10 %, respectively. The coated fiber bundles retained their tensile strength after thermal annealing up to 1650 °C in a nitrogen atmosphere for 0.5 h. SiCf/SiC samples with BN/SiC fiber coatings exhibited higher values of bending strength and strain-to-failure as a reference sample without fiber coating indicating the functionality of the fiber coatings.  相似文献   

12.
Application of SiC‐based ceramic matrix composites (CMCs) in combustion environments demands the use of an environmental barrier coating (EBC) to prevent volatilization of the protective SiO2 scale in flowing water vapor. The EBC only provides protection while present on the surface; cracking and spallation of the coating leaves the underlying SiC vulnerable to the oxidation–volatilization processes. A robust matrix material chemically tailored to regrow a yttrium silicate scale in the event of EBC loss has been developed by incorporating yttrium bearing species including YB2, Y2O3, and Y5Si3 into the SiC. During oxidation a borosilicate glass helps seal cracks while Y2O3 and SiO2 react to form Y2Si2O7 for environmental protection. Candidate compositions were oxidized for 10 min to 100 h at 1400°C and for 24 h at 1500°C to understand the scale growth. The prospects for effectively applying this approach in CMCs are discussed.  相似文献   

13.
The mullite and ytterbium disilicate (β-Yb2Si2O7) powders as starting materials for the Yb2Si2O7/mullite/SiC tri-layer coating are synthesized by a sol–gel method. The effect of SiC whiskers on the anti-oxidation properties of Yb2Si2O7/mullite/SiC tri-layer coating for C/SiC composites in the air environment is deeply studied. Results show that the formation temperature and complete transition temperature of mullite were 800–1000 and 1300°C, respectively. Yb2SiO5, α-Yb2Si2O7, and β-Yb2Si2O7 were gradually formed between 800 and 1000°C, and Yb2SiO5 and α-Yb2Si2O7 were completely transformed into β-Yb2Si2O7 at a temperature above 1200°C. The weight loss of Yb2Si2O7/(SiCw–mullite)/SiC tri-layer coating coated specimens was 0.15 × 10−3 g cm−2 after 200 h oxidation at 1400°C, which is lower than that of Yb2Si2O7/mullite/SiC tri-layer coating (2.84 × 10−3 g cm−2). The SiC whiskers in mullite middle coating can not only alleviate the coefficient of thermal expansion difference between mullite middle coating and β-Yb2Si2O7 outer coating, but also improve the self-healing performance of the mullite middle coating owing to the self-healing aluminosilicate glass phase formed by the reaction between SiO2 (oxidation of SiC whiskers) and mullite particles.  相似文献   

14.
To better understand the pyrocarbon (PyC) interphase growth mechanism, a series of experiments was conducted on the PyC deposited on T-300™ and T-700™ carbon fibers by the chemical vapor infiltration (CVI) method. Nine groups of fabrication parameters were used to analyze the effects of deposition temperature, pressure, and residence time on the PyC interphase growth mechanism. Atomic force microscopy (AFM), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), Raman spectroscopy, and nanoindentation tests were performed to characterize the microstructures of carbon fibers and PyC interphase. The PyC interphase growth mechanism was discussed, and the relationships between the fabrication parameters, R (C2/C6) value, texture type, and interphase thickness were established through numerical simulations. The hardness and modulus of PyC for T-300™ and T-700™ carbon fibers were measured. The tensile behaviors of C/SiC minicomposites with medium and high textures PyC interphases were analyzed. The C/SiC composite with the medium texture PyC interphase possessed the higher fracture strength and failure strain with a longer fiber pullout length at the fracture surface.  相似文献   

15.
The SiC fibers were coated with Ti3SiC2 interphase by dip-coating. The Ti3SiC2 coated fibers were heat-treated from 900 °C to 1100 °C in vacuum and argon atmospheres to comparatively analyze the effect of temperature and atmosphere on the microstructural evolution and mechanical strength of the fibers. The results show that the surface morphology of Ti3SiC2 coating is rough in vacuum and Ti3SiC2 is decomposed at 1100 °C. However, in argon atmosphere, the surface morphology is smooth and Ti3SiC2 is oxidized at 1000 °C and 1100 °C. At 1100 °C, Ti3SiC2 oxidized to form a thin layer of amorphous SiO2 embedded with TiO2 grains. Meanwhile, defects and pores appeared in the interphase scale. As a result, the fiber strength treated in the argon was lower than that treated in vacuum. The porous Ti3SiC2 interphase fabricated under vacuum was then employed to prepare the SiCf/SiC mini composite by chemical vapor infiltration (CVI) combined with precursor infiltration pyrolysis (PIP), and can effectively improve the toughness of SiCf/SiC mini composite. The propagating cracks can be deflected within the porous interphase layer, which promotes fiber pull-outs under the tensile strength.  相似文献   

16.
Non-oxide ceramic matrix composites (CMC) based on SiC fibers with SiC matrix were fabricated by polymer infiltration and pyrolysis (PIP) and characterized regarding their microstructural features and their mechanical properties. The fiber preform was made using winding technology. During the winding process, the SiC fiber roving was impregnated by a slurry containing SiC powder and sintering additives (Y2O3, Al2O3 and SiO2). This already helped to achieve a partial matrix formation during the preform fabrication. In this way, the number of PIP cycles to achieve composites with less than 10% open porosity could be reduced significantly. Additionally, damage-tolerant properties of the composites were obtained by an optimal design of the matrix properties although only uncoated fibers were used. Finally, composites with a strength level of about 500 MPa and a damage-tolerant fracture behavior with about 0.4% strain to failure were obtained.  相似文献   

17.
In-situ tensile damage and fracture behavior of original SiC fiber bundles, processed and uncoated SiC fiber bundles, SiC fiber bundle with PyC interphase, SiC/SiC minicomposites without/with PyC interphase are analyzed. Relationships between load-displacement curves, stress-strain curves, and micro damage mechanisms are established. A micromechanical approach is developed to predict the stress-strain curves of SiC/SiC minicomposites for different damage stages. Experimental tensile stress-strain curves of two different SiC fiber reinforced SiC matrix without/with interphase are predicted. Evolution of composite’s tangent modulus, interface debonding fraction, and broken fiber fraction with increasing applied stress is analyzed. For the BX™ and Cansas-3303™ SiC/SiC minicomposite with interphase, the composite’s tangent modulus decreased with applied stress especially approaching tensile fracture; the interface debonding fraction increased with applied stress, and the composite’s tensile fracture occurred with partial interface debonding; and the broken fiber fraction increased with applied stress, and most of fiber’s failure occurred approaching final tensile fracture.  相似文献   

18.
This paper describes the results of systematic investigation of the oxidation behavior of Si3N4 based ceramics. The tests were carried out at 1300 °C for 2000 h in a high-temperature dry air environment. The Si3N4 specimens tested include the following: (a) S-1: Si3N4 added 8 mass% Y2O3, (b) S-2: Si3N4/SiC added 8 mass% Y2O3, (c) S-3: Si3N4 added 5 mass% Y2O3 and 3 mass% Al2O3, (d) S-4: Si3N4/SiC added 5 mass% Y2O3 and 3 mass% Al2O3. Several interesting conclusions were obtained as follows: (1) the thicknesses of oxidized layer of S-3 and S-4 were much thicker than S-1 and S-2, (2) oxidation kinetics of S-1 and S-2 obeyed a parabolic law on the whole, while those of S-3 and S-4 had a break, (3) the yttrium (Y) concentration under the oxidized layer decreased significantly. The Y-decreased zone was defined as a diffused layer. The thicknesses of the diffused layers of S-3 and S-4 samples were very large. (4) Primarily, the crystalline phases in the oxidized layer were SiO2 and Y2Si2O7. (5) The effect of SiC composition on the oxidation behavior was small.  相似文献   

19.
《Ceramics International》2022,48(14):20168-20175
To improve the electromagnetic (EM) wave absorption performance of rare earth silicate in harsh environments, this work synthesized dense SiC–Y2Si2O7 composite ceramics with excellent EM wave absorption properties by using the polymer permeation pyrolysis (PIP) process, which introduced carbon and SiC into a porous Y2Si2O7 matrix to form novel composite ceramics. SiC–Y2Si2O7 composite ceramics with different numbers of PIP cycles were tested and analysed. The results show that the as-prepared composites exhibit different microstructures, porosities, dielectric properties and EM wave absorption properties. On the whole, the SiC–Y2Si2O7 composite ceramics (with a SiC/C content of 29.88 wt%) show superior microwave absorption properties. The minimum reflection loss (RLmin) reaches ?16.1 dB when the thickness is 3.9 mm at 9.8 GHz. Moreover, the effective absorption bandwidth (EAB) included a broad frequency from 8.2 GHz to 12.4 GHz as the absorbent thickness varied from 3.15 mm to 4.6 mm. In addition, the EM wave absorption mechanism was analysed profoundly, which ascribed to the multiple mediums of nanocrystalline, amorphous phases and turbostratic carbon distributed in the Y2Si2O7 matrix. Therefore, SiC–Y2Si2O7 composite ceramics with high-efficiency EM wave absorption performance promise to be a novel wave absorbing material for applications in harsh environments.  相似文献   

20.
SiC/SiC minicomposites that comprise different pyrocarbon/silicon carbide ((PyC/SiC) n ) multilayered interphases and a tow of SiC fibers (Hi-Nicalon) have been prepared via pressure-pulsed chemical vapor infiltration. Pyrocarbon and SiC were deposited from propane and a CH3SiCl3/H2 mixture, respectively. The microstructure of the interphases has been investigated using transmission electron microscopy. The mechanical tensile behavior of the minicomposites at room temperature exhibits the classical features of tough composites, regardless of the characteristics of the (PyC/SiC) sequences. The interfacial shear stress has been determined from the width of hysteresis loops upon unloading/reloading and from the crack-spacing distance at saturation. All the experimental data indicate that the strength of the fiber/interphase interfaces is rather weak (∼50 MPa).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号