首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Ceramics International》2022,48(8):10770-10778
Pitch-based carbon fibers were assembled in horizontal and thickness directions of SiC/SiC composites to form three-dimensional heat conduction networks. The effects of heat conduction networks on microstructures, mechanics, and thermal conductivities were investigated. The results revealed the benefit of introducing heat conduction networks in the densification of composites. The maximum bending strength and interlaminar shear strength of the modified composites reached 568.67 MPa and 68.48 MPa, respectively. These values were equivalent to 18.6% and 69.4% increase compared to those of composites without channels. However, channels in thickness direction destroyed the continuity of fibers and matrix, creating numerous defects. As the volume fraction of heat conduction channels rose, the pinning strengthening effect of channels and influence of defects competed with each other to result in first enhanced mechanical properties followed by a decline. The in-plane thermal conductivity was found anisotropic with a maximum value reaching 86.20 W/(m·K) after introducing pitch-based carbon unidirectional tapes. The thermal conductivity in thickness direction increased with volume fraction of pitch-based carbon fibers and reached 19.13 W/(m·K) at 3.87 vol% pitch-based carbon fibers in the thickness direction. This value was 90.75% higher than that of composites without channels.  相似文献   

2.
《Ceramics International》2022,48(24):36238-36248
Cf/SiC composite is an excellent structural and functional material, silicon carbide nanowires (SiCnws) are not only a toughening material but also a great application in the field of microwave absorption. In this study, SiCnws are grown on the surface of carbon fiber (Cf) by polymer impregnation and pyrolysis, and the SiC matrix was prepared by chemical vapor osmosis method. The SiCnws are introduced to enhance the mechanical and microwave absorption properties simultaneously. After 3 impregnations, the flexural strength of the composite was 107.35 ± 10 MPa. When the thickness is 1.86 mm, the minimum reflection loss value is ?41.08 dB, and the effective absorption bandwidth (RL ≤ ?10 dB) is 3.86 GHz. Furthermore, the microwave absorption mechanism of the material is discussed. This work provides a new method to prepare lightweight, stable and high-performance microwave absorption materials, and these materials are expected to be used in high temperature environments.  相似文献   

3.
Hexagonal-shaped SiC nanowires were in situ formed in C/SiC composites with ferrocene as catalyst in the densification process of polymer impregnation and pyrolysis. The effect of SiC nanowires on microstructure and properties of the composites were studied. The results show that the in situ formed SiC nanowires were hexagonal, mostly with diamer of about 250 nm, and grew by the vapor–liquid–solid (VLS) mechanism. The C/SiC composite with nanowires shows higher bulk density and flexural strength than the one with no SiC nanowires, and the high temperature flexural strength behavior of C/SiC composites with SiC nanowires was evaluated.  相似文献   

4.
Short-carbon-fiber-reinforced SiC composites were prepared by precursor pyrolysis–hot pressing with MgO–Al2O3–Y2O3 as sintering additives. The effects of the amount of sintering additives on microstructure and mechanical properties of the composites were investigated. The results showed that the composites could be densified at a relatively low temperature of 1800 °C via the liquid-phase sintering mechanism and the composite density and mechanical properties improved with the amount of additives. The amorphous interphase in the composites with more additive content, not only avoided the direct contact of the fibers with matrix, but also improved the fiber–matrix bonding. It proved that the fiber–matrix interphase characteristics played a key role in controlling mechanical properties of the composites.  相似文献   

5.
This article reported a novel method for preparing diamond/SiC composites by tape-casting and chemical vapor infiltration (CVI) process, and the advantages of this method were discussed. The diamond particle was proved to be thermally stable under CVI conditions and the CVI diamond/SiC composites only contained diamond and CVI-SiC phases. The SEM and TEM results showed a strong interfacial bonding existed between diamond and CVI-SiC matrix. Due to the strong bonding, the surface HRA hardness could reach up to 98.4 (HV 50 ± 5 GPa) and the thermal conductivity (TC) of composites was five times higher than that of pure CVI-SiC matrix. Additionally, the effects of diamond particle size on microstructure and properties of composites were also investigated. With the increasing of particle size, the density and TC of composites with the size 27 μm reached 2.940 g/cm3 and 82 W/(m K), respectively.  相似文献   

6.
Among the various concepts of SiC-based accident-tolerant fuel cladding, duplex SiC cladding, consisting of an inner composite layer and an outer monolithic SiC layer, is considered an optimal design due to its low load failure probability. In this study, SiC nanowires (SiCnw) were introduced on the substrate graphite rod to decrease the diameter of architectural valley-regions of SiC fiber (SiCf) tubular preform. By avoiding the architectural valley-voids, a dense two-layer SiCnw tube consisting of an inner SiC fiber-reinforced SiC matrix (SiCf/SiC) composite layer deposited by chemical vapor infiltration with a smooth inner surface was obtained. The microstructure and thermal properties of as-obtained two-layer SiCnw tubes were studied. Results showed that the thermal conductivity of the whole tube was highly sensitive to variations in thermal conductivity of the inner composite layer. By improving the thermal conductivity of the inner composite layer, the two-layer SiCnw tube exhibited a thermal conductivity of 23.8 W m−1 K−1 at room temperature, which had an improvement of 71 % compared to the two-layer SiC tube (13.9 W m−1 K−1). Moreover, the thermal transport properties of the two-layer SiCnw tube were significantly improved by a reduction in roughness of the inner surface.  相似文献   

7.
The effect of oxidation and thermal residual stress on mechanical properties of SiC seal coated C/SiC composite at ambient temperature and high temperature were studied. The oxidation of SiC seal coated C/SiC composite at 1300 and 1500 °C resulted in carbon fibres burn area near through thickness micro cracks in the SiC seal coating. With the increase in exposure time, the formation of SiO2 layer in SiC matrix near carbon fibres burns area was found. Residual mechanical properties of SiC seal coated C/SiC composite after exposure in air show significant degradation. First time, a continuous measurement of Young's modulus with temperature of C/SiC composite was carried out using an impulse excitation technique. The effect of relaxation of thermal residual stress on mechanical properties was observed with the help of continuous measurement of Young's modulus as a function of temperature in an inert atmosphere.  相似文献   

8.
The effects of the SiC nanowires (SiCNWs) and PyC interface layers on the mechanical and anti-oxidation properties of SiC fiber (SiCf)/SiC composites were investigated. To achieve this, the PyC layer was coated on the SiCf using a chemical vapour infiltration (CVI) method. Then, SiCNWs were successfully coated on the surface of SiCf/PyC using the electrophoretic deposition method. Finally, a thin PyC layer was coated on the surface of SiCf/PyC/SiCNWs. Three mini-composites, SiCf/PyC/SiC, SiCf/PyC/SiCNWs/SiC, and SiCf/PyC/SiCNWs/PyC/SiC, were fabricated using the typical precursor infiltration and pyrolysis method. The morphologies of the samples were examined using scanning electron microscopy and energy dispersive X-ray spectrometry. Tensile and single-fibre push-out tests were carried out to investigate the mechanical performance and interfacial shear strength of the composites before and after oxidization at 1200 °C. The results revealed that the SiCf/PyC/SiCNWs/SiC composites showed the best mechanical and anti-oxidation performance among all the composites investigated. The strengthening and toughening is mainly achieved by SiCNWs optimization of the interfacial bonding strength of the composite and its own nano-toughening. On the basis of the results, the effects of SiCNWs on the oxidation process and retardation mechanism of the SiCf/SiC mini-composites were investigated.  相似文献   

9.
To improve the high-temperature tolerance of carbon/carbon composites, a compact SiC-nanowires toughened LaB6-MoSi2-SiC/SiC (SiCnws-LMS/SiC) coating was designed and fabricated by combination of multiple methods including pack cementation, chemical vapor deposition and supersonic atmospheric plasma spraying. Isothermal oxidation results indicated that the mass loss of LMS/SiC coating decreased from 4.34?±?0.28% to 1.12?±?0.23% after oxidation for 200?h at 1773?K benefit from the addition of SiCnws. Absence of obvious cracks and voids in the coating after oxidation test indicated that the interfaces between various phases and SiCnws could obstruct the crack propagation by releasing the thermal stress in the coating. Meanwhile, after the introduction of SiCnws, the bonding strength and flexural strength of the coating were respectively increased by 54.54% and 59.77% compared to the LMS/SiC coating without SiCnws. The improved mechanical properties could be attributed to the pullout and bridging effects of SiCnws, which created multi-scaled reinforcements, thereby enhancing the load bearing capacity to increase the fracture toughness of the coating.  相似文献   

10.
《Ceramics International》2017,43(14):11006-11014
SiC nanowires were successfully synthesized without catalyst by pyrolysis of silicon-containing pitch-derived carbon materials in a closed graphite crucible. These silicon-containing carbon materials were obtained by homogenization and co-carbonization of a hybrid precursor consisting of the toluene soluble fraction of coal tar pitch with polycarbosilane (PCS). The composition, morphology and structure of the nanowires were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). The influence of pyrolysis temperature on the growth of the nanowires was investigated by Fourier transform infrared spectroscopy (FTIR) and thermo-gravimetry coupled with mass spectroscopy (TG-MS) analysis. The results indicate that the growth of the SiC nanowires starts at around 1200 °C. As the pyrolysis temperature increases to 1300–1500 °C, a large quantity of nanowires are formed on the top surface of the pitch-derived carbon substrate. In addition, increasing the pyrolysis temperature leads to an increase in the average diameter and a change in the typical morphology produced. The synthesized SiC nanowires have single-crystalline structure and are grown along the [111] direction with numerous stacking faults and twins. The vapor-solid (VS) mechanism may be responsible for the growth process of the SiC nanowires.  相似文献   

11.
《Ceramics International》2022,48(22):33019-33027
The in-situ SiC whisker and SiC particle composites were prepared by selective laser sintering (SLS) technology, and the longitudinal and transverse growth rates of crystal nuclei at the liquid-solid interface were calculated and analyzed under the traditional vapor-liquid-solid mechanism. A mathematical model of holding time on the number of in-Situ SiC whisker growth was established, and the prediction rate was 95%. The mechanical properties of in-situ SiC whisker and pure SiC samples with similar volume densities were calculated. The results showed that: The longitudinal growth rate of crystal nuclei at the liquid-solid interface was higher than the transverse growth rate. After precursor infiltration pyrolysis (PIP) four-cycle treatment, the fracture toughness per unit volume density of B-1, B-2, and B-3 specimens increased by 198.66%, 225.00%, and 221.05%, respectively, compared with pure SiC specimens, indicating that this method has a vital role in increasing the toughness of SiC ceramics.  相似文献   

12.
《Ceramics International》2022,48(2):1532-1541
In order to improve the degree of matrix densification of SiCf/SiC composites based on liquid silicon infiltration (LSI) process, the microstructure and mechanical properties of composites according to various pyrolysis temperatures and melt infiltration temperatures were investigated.Comparing the microstructures of SiCf/C carbon preform by a one-step pyrolysis process at 600 °C and two-step pyrolysis process at 600 and 1600 °C, the width of the crack and microcrack formation between the fibers and matrix in the fiber bundle increased during the two-step pyrolysis process. For each pyrolysis process, the density, porosity, and flexural strength of the SiCf/SiC composites manufactured by the LSI process at 1450–1550 °C were measured to evaluate the degree of matrix densification and mechanical properties. As a result, the SiCf/SiC composite that was fabricated by the two-step pyrolysis process and LSI process showed an 18% increase in density, 16%p decrease in porosity, and 150% increase in flexural strength on average compared to the composite fabricated by the one-step pyrolysis process.In addition, among the SiCf/SiC specimens fabricated by the LSI process after the same two-step pyrolysis process, the specimen that underwent the LSI process at 1500 °C showed 30% higher flexural strength on average than those at 1450 or 1550 °C. Furthermore, under the same pyrolysis temperature, the mechanical strength of SiCf/SiC specimens in which the LSI process was performed at 1500 °C was higher than that of the 1550 °C although both porosity and density were almost similar. This is because the mechanical properties of the Tyranno-S grade SiC fibers degraded rapidly with increasing LSI process temperature.  相似文献   

13.
Diamond/SiC/(Si) composites were fabricated by Si vapor vacuum reactive infiltration. The coefficient of thermal expansion (CTE) of composites have been measured from 50 to 400 °C. With the diamond content increasing, CTE of composite decreased, simultaneously, the microstructure of the composites changed from core–shell particles embedded in the Si matrix to an interpenetrating network with the matrix. The CTEs of composites versus temperature matched well with those of Si. The Kerner model was modified according to the structural features of the composites, which exhibited more accurate predictions due to considering the core–shell structure of the composites. The thermal expansion behavior of the matrix was constrained by diamond/SiC network during heating.  相似文献   

14.
Commonly, carbon foam derived from commercially available melamine foam showed brittle characteristics. In this paper, the carbon foam was prepared via the direct carbonization of the melamine foam, and chemical vapor deposition was employed to deposit ultra-thin SiC films on the CF skeleton. The evolution, microstructure, mechanical strength, and thermal properties of the as-prepared SiC/CF composites were investigated. Test results showed that a novel SiC skeleton with a three-dimensional interconnected network was prepared successfully. The thickness of the SiC filmes had a significant influence on the compression and thermal properties of the composites. The SiC/CF-II possessed a higher compression performance than that of SiC/CF-I, while the thermal insulation was relatively much poorer. This present work had some reference meaning to the correlation studies of the thermal insulation material for the potential applications while bearing live loads.  相似文献   

15.
Precursor infiltration and pyrolysis (PIP) and chemical vapor infiltration (CVI) were used to fabricate SiC/SiC composites on a four-step 3D SiC fibre preform deposited with a pyrolytic carbon interface. The effects of fabrication processes on the microstructure and mechanical properties of the SiC/SiC composites were studied. Results showed the presence of irregular cracks in the matrix of the SiC/SiC composites prepared through PIP, and the crystal structure was amorphous. The room temperature flexural strength and modulus were 873.62 MPa and 98.16 GPa, respectively. The matrix of the SiC/SiC composites prepared through CVI was tightly bonded without cracks, the crystal structure had high crystallinity, and the room temperature bending strength and modulus were 790.79 MPa and 150.32 GPa, respectively. After heat treatment at 1300 °C for 50 h, the flexural strength and modulus retention rate of the SiC/SiC composites prepared through PIP were 50.01% and 61.87%, and those of the composites prepared through CVI were 99.24% and 96.18%, respectively. The mechanism of the evolution of the mechanical properties after heat treatment was examined, and the analysis revealed that it was caused by the different fabrication processes of the SiC matrix. After heat treatment, the SiC crystallites prepared through PIP greatly increased, and the SiOxCy in the matrix decomposed to produce volatile gases SiO and/or CO, ultimately leading to an increase in the number of cracks and porosity in the material and a decrease in the material load-bearing capacity. However, the size of the SiC crystallites prepared through CVI hardly changed, the SiC matrix was tightly bonded without cracks, and the load-bearing capacity only slightly changed.  相似文献   

16.
Oxidation protective SiC nanowires‐reinforced SiC (SiCNWs‐SiC) coating was prepared on pack cementation (PC) SiC‐coated carbon/carbon (C/C) composites by a simple chemical vapor deposition (CVD) process. This double‐layer SiCNWs‐SiC/PC SiC‐coating system on C/C composites not only has the advantages of SiC buffer layer but also has the toughening effects of SiCNWs. The microstructure and phase composition of the nanowires and the coatings were examined by SEM, TEM, and XRD. The single‐crystalline β‐SiC nanowires with twins and stacking faults were deposited uniformly and oriented randomly with diameter of 50‐200 nm and length ranging from several to tens micrometers. The dense SiCNWs‐SiC coating with some closed pores was obtained by SiC nanocrystals stacked tightly with each other on the surface of SiCNWs. After introducing SiCNWs in the coating system, the oxidation resistance is effectively improved. The oxidation test results showed that the weight loss of the SiCNWs‐SiC/PC SiC‐coated samples was 4.91% and 1.61% after oxidation at 1073 K for 8 hours and at 1473 K for 276 hours, respectively. No matter oxidation at which temperature, the SiCNWs‐SiC/PC SiC‐coating system has better anti‐oxidation property than the single‐layer PC SiC coating or the double‐layer CVD SiC/PC SiC coating without SiCNWs.  相似文献   

17.
To improve the efficiency of the polymer impregnation and pyrolysis (PIP) process and the mechanical properties for SiC/SiC composites, 3-dimensional (3D) SiC/SiC were fabricated by a PIP process with a new precursor polymer and the thermal molding method. Liquid polyvinylcarbosilane (LPVCS) with active Si–H and –CHåCH2 groups was adopted as the SiC matrix precursor. The SiC/SiC composites with superior mechanical properties were efficiently fabricated. The fiber volume of the SiC/SiC was 50.4%. The bulk density and porosity of the SiC/SiC composites were 2.16 g cm−3 and 15.4% respectively. The flexural strength and fracture toughness of the SiC/SiC composites were 637.5 MPa and 29.8 MPa m1/2 respectively. The influences of LPVCS and molding pressure on the performances of the SiC/SiC composites were discussed in-depth.  相似文献   

18.
《Ceramics International》2020,46(10):16151-16156
Silicon carbide (SiC) particles were utilized to improve the mechanical, thermal and anti-ablative properties of carbon/phenolic (C/Ph) composites. SiC–C/Ph composites were fabricated with different weight percentage of SiC by vacuum impregnation method. The mechanical and thermal properties were characterized by compression tests, thermal conductivity tests, and thermogravimetric analysis; meanwhile, ablation resistance was investigated using plasma wind tunnel tests and scanning electron microscopy. Experimental results showed that 5 wt% SiC modified C/Ph composites owned the optimum properties. Moreover, introducing SiC particles could result in an obvious decrease of compression strength, but an increase of thermal stability, thermal conductivity and anti-ablative performance. Notably, the ablation rate reached its the lowest point at 5% the SiC content in resin matrix composites.  相似文献   

19.
《Ceramics International》2020,46(13):20742-20750
Novel microwave-absorbing SiOC composite ceramics with dual nanowires (carbon nanowires (CNWs) and SiC nanowires) with high performances were fabricated by using the polymer-derivation method and heat treatment in Ar atmosphere. The introduction of CNWs in the amorphous SiOC ceramics promotes the ceramic crystallization into SiC nanoparticles and SiC nanowires at lower annealing temperatures, which leads to multi-phases and multiple nano heterogeneous interfaces. The distinctive architectures largely increase the interfacial and dipole polarizations of the composite ceramics. The CNWs/SiC/SiOC composite ceramics exhibit excellent microwave-absorption properties in the Ku band (12.4–18 GHz). The minimum reflection coefficient (RC) is -24.5 dB at a thickness of 1.8 mm, while the maximum effective absorption bandwidth (EAB, the corresponding frequency band in which RC is smaller than -10 dB) is 4.8 GHz at a thickness of 1.9 mm, which make the CNWs/SiC/SiOC composite ceramics promising electromagnetic-wave-absorbing materials.  相似文献   

20.
In order to improve the mechanical properties, vertically aligned carbon nanotubes (VACNTs) were in situ introduced on the pyrocarbon (PyC) interfaces of the multilayer preform via chemical vapor deposition (CVD) process under tailored parameters. Chemical vapor infiltration (CVI) process was then employed to densify the multilayer preform to acquire SiC/SiC composites. The results show that the growth of VACNTs on PyC interface is highly dependent to the deposition temperature, time and constituent of gas during CVD process. The preferred orientation and high graphitization of VACNTs were obtained when temperature is 800?℃ and C2H4/H2 ratio is 1:3. The bending strength and fracture toughness of SiC/SiC composites with PyC and PyC-VACNTs interfaces were compared. Compared to the SiC/SiC composite with PyC interface, the bending strength and fracture toughness increase 1.298 and 1.359 times, respectively after the introduction of PyC-VACNTs interface to the SiC/SiC composites. It is also demonstrated that the modification of PyC interface with VACNTs enhances the mechanical properties of SiC/SiC composites due to the occurrence of more fiber pull-outs, interfacial debonding, crack branching and deflection  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号