首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We experimentally investigated 3D biparticulate systems that segregate solely due to density differences in the 3D horizontal rotating drum geometry and compare these to systems which segregate due to size differences. Radial segregation was observed in all systems studied after a few drum rotations. Size induced axial segregation (banding) was observed, as expected. However, contrary to what has sometimes been reported, we found that density differences alone did not induce axial segregation for density ratios up to 4.9.  相似文献   

2.
Wall roughness plays a crucial role in granular medium - rough wall interface friction. In this study, an experimental device has been designed to study the influence of boundary conditions, more specifically wall roughness, on the behavior of sheared granular medium. The study is based on use of an analog model, and consists of simulating roughness by means of notches and grains in the medium by monodisperse beads and on use of a numerical model based on the discrete element method. The test protocol entails displacing at fixed speed notched rods under confined granular medium. Movement of the beads layer near the rods as well as friction of the beads against the rods are both studied herein. Results indicate that the parameter controlling friction at the granular medium - rough wall interface is primarily the depth of beads embedment in surface asperities. The objective of the associated numerical modeling is to supplement the experimental results.  相似文献   

3.
Background: An automated version of uniaxial powder flow testing has recently been developed and there is a need for experimental data from pharmaceutical powders.

Purpose: To compare the novel testing method with an annular shear cell using different pharmaceutical excipients. A particular aim was to gain an improved understanding of potential differences in the obtained flow results.

Methods: Nine excipients were studied with both flow testers at different consolidation levels. Unconfined yield strengths were determined at similar major consolidation stresses. Finally, an anisotropic stress factor was calculated and the fractal character of the powders was assessed by means of image analysis in a rotating drum.

Results: Data correlated generally well; however, the unconfined yield strength from uniaxial testing resulted mostly in lower values compared to annular shear cell testing. Differences were specific for the given excipients and mannitol demonstrated the highest discrepancy of measured flow parameters. The differences were first discussed by considering wall friction, anisotropy of forces, brittleness as well as the fractal nature of the powder surface. This heterogeneity of the powder as well as the anisotropy of forces was also found to be important for the relative flow index.

Conclusions: The automated uniaxial method demonstrated faster and more reproducible flow testing as compared to an annular shear cell. Therefore, the new method has a high potential in pharmaceutics for example in the quality-control of powders.  相似文献   

4.
The influence of imperfect bonding, owing to partial lack of adhesive, on the strength of composite non-crimp fabric (NCF) double-lap shear (DLS) joints was experimentally and numerically investigated. Fabrics were layered and compacted using a thermoplastic veil while infiltration of the preforms was done using the vacuum assisted process. Paste adhesive bonding was carried out by implementing the novel insertion squeeze flow process. Quality of adhesive bonding was tested using X-ray imaging and ultrasonic C-scan inspection. The tensile lap shear strength of the DLS joints was determined experimentally. Digital macrographs revealed that the specimens failed due to shear failure of the adhesive (debonding) and fracture of the composite boundary layer. As a second approach, a mesomechanical model based on the FE method and the (homogenized) progressive failure analysis method was developed. In the model, the areas without adhesion, as detected by the C-scans, were included. Numerical simulations of failure initiation and progression at the NCF joint and the adhesive indicated that it is possible to predict the strength and failure mechanisms of the imperfect bonded DLS joints.  相似文献   

5.
《Advanced Powder Technology》2020,31(4):1431-1440
This paper aims to study the shear behavior of granular matter by DEM simulations. Granular samples are prepared by automatic clump generation algorithm to create particles of irregular shapes. Simulations of the biaxial test with membrane boundary condition are used to test the shear behavior of samples. A new method for computing sample volume in membrane boundary condition is proposed. Deviatoric stress and volumetric strain curves are plotted to describe contracting-dilatancy of granular materials during the shearing stage. Formation of the shear band is studied from particle rotation and particle displacement fields. The influence of confining pressure, initial porosity, and friction coefficient on the development of shear band are studied. Lower confining pressure, higher initial porosity can be resulted in later formation of shear bands.  相似文献   

6.
《Advanced Powder Technology》2020,31(4):1702-1707
In this paper, the influences of the addition of a small amount of fine powder and rotation speed on the dynamic properties and density-induced segregation behavior of granular matter in a quasi-two-dimensional rotating drum were experimentally investigated. An optical camera was applied to capture the motion of the particles in the drum. Image-processing technology and a particle tracking method were applied for determining the velocity, granular temperature and segregation index of granular materials. The results indicate that the addition of a small amount of fine powder has a significant effect on dynamic properties and density-induced segregation behavior. The average velocity and the average granular temperature are enhanced with the increase of the fine powder content because of the lubrication effect between particles. Additionally, the results indicate that density segregation is strengthened with the increase of fine powder.  相似文献   

7.
Granular segregation in a rotating tumbler occurs due to differences in either particle size or density, which are often varied individually while the other is held constant. Both cases present theoretical challenges; even more challenging, however, is the case where density and size segregation may compete or reinforce each other. The number of studies addressing this situation is small. Here we present an experimental study of how the combination of size and density of the granular material affects mixing and segregation. Digital images are obtained of experiments performed in a half-filled quasi-2D circular tumbler using a bi-disperse mixture of equal volumes of different sizes of steel and glass beads. For particle size and density combinations where percolation and buoyancy both contribute to segregation, either radial streaks or a “classical” core can occur, depending on the particle size ratio. For particle combinations where percolation and buoyancy oppose one another, there is a transition between a core composed of denser beads to a core composed of smaller beads. Mixing can be achieved instead of segregation if the denser beads are also bigger and if the ratio of particle size is greater than the ratio of particle density. Temporal evolution of these segregated patterns is quantified in terms of a “segregation index” (based on the area of the segregated pattern) and a “shape index” (based on the area and perimeter of the segregated pattern).  相似文献   

8.
The effect of particle size and boundary geometry in granular shear flows is investigated. The measured shear stress of glass spheres in an annular shear cell experiment is reported. In order to explore the particle size effect, the experiments are run using four different particle diameters, d = 2, 3, 4, and 5 mm. It is found that the shear stress follows the Bagnold scaling with respect to the apparent shear rate, but deviates from it with respect to particle size. For high solids concentration the results deviate qualitatively from the kinetic theory for bounded granular shear flows, where the non-dimensional shear stress measured with large particles exceeds that measured for small particles by as much as one order of magnitude. The effect of the boundary geometry is explored by using three different boundary types; type 1 employs aluminum radial half-cylinders, type 2 employs aluminum hemispheres arranged in a polar hexagonal closed packed configuration, and type 3 employs sandpaper. It is shown that the geometry of the boundary has an insignificant effect on dilute flows of small particles. For denser flows and/or larger particles the difference is evident. The sandpaper boundary, which is different from the aluminum ones both in geometry and in its material properties, yields the lowest stress. These results imply that in granular materials-structure interaction, the structure’s properties are just as important as the properties of the granular material. Their interaction may also depend on the relative size between the structure and the grain size.  相似文献   

9.
In this research the effect of bolt interference fit on the fatigue life of lap joints in double shear was investigated by conducting experimental fatigue tests and also analytically by FE simulation. In the experimental part, fatigue tests were carried out on specimens made from aluminium alloy 2024-T3 plates joined together as double lap joints and secured using bolts having fits ranging from zero clearance to different levels of interference. The results demonstrate how the failure is affected using different levels of interference fit. In the numerical study, 3-D FE models were used to simulate the different pin in hole fits considered and the results have been used to help explain the trends which were observed in the experimentally obtained SN curve behaviour.  相似文献   

10.
采用微孔模具,改变润滑条件和微孔尺寸,通过万能试验机对不同厚度的纯铜试件进行了微细特征模压成形的实验研究,同时对成形过程进行了数值模拟,分析并给出了微细特征模压成形时的主要变形区域以及成形力的变化特点.实验和模拟结果表明:微细特征尺寸越大,润滑状态越好,成形越容易;适当的坯料厚度可以降低成形的难度;微细特征成形在坯料较...  相似文献   

11.
以带板梁为研究对象,运用极限平衡理论和数值分析手段,讨论了剪切变形为主的带板梁变形和破坏机理。内容包括,极限载荷的计算方法;不同载荷作用下带板梁各横截面的合成应力、正应力、剪应力沿腹板高度的分布及其规律;塑性变形的产生和发展过程;带板梁碰撞吸能的成分分析。所得到的结果对耐撞性结构设计、建成船舶的耐撞性评估和模型试验方案设计等都具有指导意义。  相似文献   

12.
In this paper, some basic mechanical behaviors of bulk metallic glasses (BMGs) were discussed. It can be found from the discussions that the mechanical behaviors of BMGs are mainly due to the formation and operation of shear bands in BMGs. Furthermore, the relevant mechanics of shear banding were investigated in the paper. The theoretical analysis of deformation coupling thermal softening and free volume creation softening demonstrates that the free volume creation and thermal softening can jointly promote the formation of shear bands in BMGs, and the observed post mortem shear band width looks more like that governed by free volume creation.  相似文献   

13.
The ion temperature in a large diameter plasma is measured with the high-resolution optical emission spectroscopy. It is found that the ion temperature is low when the radial distribution of the plasma is flat profile compared with that in the case of peaked profile. The results of numerical calculation carried out by using the hybrid model validate the assumption of Boltzmann distribution in plasma and agree well with the experimental results. Thus, it is concluded that the decrease of the ion temperature is caused by the decrease of the radial electric field.  相似文献   

14.
Copper single crystals were subjected to equal-channel angular pressing for two passes via the routes A and C, in order to examine the effect of iterative shear in forward and reverse directions on the development of shear bands in a crystallographic aspect. Shear bands were clearly revealed metallographically after one pass, which accompanies splitting of distinct crystallographic orientations. These shear bands remained after the second pass via route A, where shear was given in a forward direction with regard to the previous shear. Micro-indentation tests show that the shear bands were harder than the matrix, and both the shear bands and the matrix became harder progressively by the second pass. In route C, where the second shear is given in the parallel plane, but in the reverse direction with regard to the previous shear, most of these shear bands were less visible in metallographic and EBSD observations. Besides, the distribution of microhardness became homogeneous across the traces of shear bands and the matrix. It is suggested that the shear bands were dissolved by merging with the matrix by diffusion of the geometrically necessary dislocations (GND) delineating the shear bands and the matrix.  相似文献   

15.
A key challenge for stem cell therapies is the delivery of therapeutic cells to the repair site. Magnetic targeting has been proposed as a platform for defining clinical sites of delivery more effectively. In this paper, we use a combined in vitro experimental and mathematical modelling approach to explore the magnetic targeting of mesenchymal stromal cells (MSCs) labelled with magnetic nanoparticles using an external magnet. This study aims to (i) demonstrate the potential of magnetic tagging for MSC delivery, (ii) examine the effect of red blood cells (RBCs) on MSC capture efficacy and (iii) highlight how mathematical models can provide both insight into mechanics of therapy and predictions about cell targeting in vivo. In vitro MSCs are cultured with magnetic nanoparticles and circulated with RBCs over an external magnet. Cell capture efficacy is measured for varying magnetic field strengths and RBC percentages. We use a 2D continuum mathematical model to represent the flow of magnetically tagged MSCs with RBCs. Numerical simulations demonstrate qualitative agreement with experimental results showing better capture with stronger magnetic fields and lower levels of RBCs. We additionally exploit the mathematical model to make hypotheses about the role of extravasation and identify future in vitro experiments to quantify this effect.  相似文献   

16.
The self-organization behaviors of multiple adiabatic shear bands (ASBs) in the 7075 T73 aluminum alloy were investigated by means of the thick-walled cylinder (TWC) technique. Shear bands first nucleate at the inner boundary of the aluminum alloy tube and propagate along the maximum shear stress direction in the spiral trajectory. On the cross section of the specimen, shear bands distribute either in the clockwise or the anticlockwise direction. The number of ASBs in the clockwise direction is roughly twice that in the anticlockwise direction. However, the 7075 annealed alloy does not generate any shear band under the same experimental conditions.Numerical simulation with coupled thermo-mechanical analysis was carried out to investigate the evolution mechanism of adiabatic shear bands. Both uniform and non-uniform finite element models were created. The simulation results of the non-uniform model are in better agreement with those of the experiment. In the non-uniform case, the spacing between ASBs is larger than that of the uniform model, and most of the ASBs prefer to propagate in the clockwise direction. For the first time, two types of particles (second phase), hard particles and soft particles, are separately introduced into the metal matrix in the non-uniform model to simulate their effects on the self-organization of ASBs. The soft particles reduce the time required for ASBs nucleation. Stress collapse first occurs at the region where the soft particles are located and most of the ASBs pass through these soft particles. However, ASBs propagate along the paths that are adjacent to the hard particles instead of passing through them. As experimental observations, there is no shear band nucleating in the annealed alloy in simulation. Under the same conditions, the energy barrier for the formation of ASBs in the annealed aluminum alloy is about 2.5 times larger than that in the T73 alloy, which means that the adiabatic shearing is less likely to nucleate in the annealed alloy. This is consistent with the experimental and numerical simulation results.  相似文献   

17.
In numerically simulated vibrated beds of powder, we measure temperature under convection by the generalized Einstein's relation. The spatial temperature distribution turns out to be quite uniform except for the boundary layers. In addition to this, temperature remains uniform even if segregation occurs. This suggests the possibility that there exists some thermal equilibrium state even in a vibrated bed of powder. This finding may lead to a unified view of the dynamic steady state of granular matter.  相似文献   

18.
Oblique impacts produce asymmetric damage patterns due to asymmetric, directed shock waves; these patterns are seen for both laboratory and planetary scale craters [1] and [2]. Previous laboratory and computational studies of impact-induced damaged have focused mainly on tensile failure following hypervelocity impacts. Though extension plays a significant role in impact-induced damage, it is widely accepted that shear failure also occurs during hypervelocity impacts. Shear failure occurs over a variety of scales both during and after impacts [3], [4] and [5]. Here we examine this process in more detail for oblique impacts. Experiments not only provide a general view of small-scale processes (including damage patterns in their final form), but also can be difficult to relate to larger impacts with confidence, even though similarities can be documented [e.g. 1]. Detailed computer models provide complementary information. Although they detail underlying processes during crater formation, they do not always contain adequate constitutive models, thereby requiring simplifying assumptions. A comprehensive model taking into account deformation following failure of rocks is still unavailable, which limits conclusions based solely on numerical simulations. Consequently, a combination of models and experiments must be used. Impact experiments into planar polymethylmethacrylate (PMMA) targets at small scale are examined in an attempt to constrain the sequence, location and style of failure. Two- and three-dimensional CTH models (with identical conditions to the experiments) were computed using a variety of failure criteria in order to determine the parameter set that best matches the experimental results. High-speed imaging recorded the sequence and location of failure within various PMMA targets, which was then compared with results from theoretical models. The CTH models provide critical details about specific failure style and indicate only minimal failure due to extension following the impact except for tensile failure at the base of the block. Instead, shear failure dominates below the crater. While the CTH hydrocode models generally match the extent of the damaged region, some differences remain. Projectile properties (density, composition, size) for impacts with the same kinetic energy affect the extent, style, and growth of damage in a given target. This includes differences in degree of uprange damage, subarcuate fractures, and sub-parallel failure planes. Comparisons between experiment and hydrocode results reveal that projectile failure (even at hypervelocity) contributes to the observed differences.  相似文献   

19.
20.
The paper focuses on debonding propagation along an interface, notably on the major influence of the interlocking between the two faces of the debonding interface. The aim of the study is to obtain the data necessary for relevant and efficient debonding modelling. The work associates experiment and simulation with the purpose of quantifying the interlocking along the interface. The overlay material investigated was a fibre reinforced mortar (FRM). Direct tension tests of notched FRM specimens were firstly conducted to obtain the tensile strength and the residual normal stress—crack width relationship. Its Young's modulus was determined from compression tests. The substrate-overlay interface was investigated by direct tension tests and flexure tests performed on composite substrate-overlay specimens. The direct tension tests provided the interface tensile strength and the relationship between debonding-opening and residual normal tensile stress. Three point flexural static tests informed on the structural behaviour of the interface. The debonding interface propagation was monitored using a video-microscope with a maximum enlargement of ×175. Using the identified and quantified parameters, modelling of the above mentioned static tests was carried out by the finite elements method using CAST3M code developed in France by CEA (Centre for Atomic Energy). The comparison of modelling and experiment results shows a good coherence and proves the important role of interlocking on the debonding mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号