首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to understand the relation between microstructure and toughening behavior in SiC materials, NbB2, TaB2, TiB2, and ZrB2 particulate SiC composites were fabricated with pressureless sintering. In the composites, 3(cubic)-SiC powder was used as starting material for the matrix. The p-SiC powder transformed to a(noncubic) phase during sintering. The transformation, the behavior of which was influenced by the existence of metal boride particles, was accompanied by normal or exaggerated grain growth. The metal boride particles suppressed large-scale exaggerated grain growth of SiC, and it had a tendency to simulate grain growth with a high aspect ratio of the SiC grains. Increase in the fracture toughness of the composites was observed when the grain size and the aspect ratio of the SiC grains increased together. The toughening behavior is discussed based on a grain bridging mechanism.  相似文献   

2.
A novel Pr3Si2C2 additive was uniformly coated on SiC particles using a molten-salt method to fabricate a high-density SiC ceramics via liquid-phase spark plasma sintering at a relatively low temperature (1400°C). According to the calculated Pr–Si–C-phase diagram, the liquid phase was formed at ∼1217°C, which effectively improved the sintering rate of SiC by the solution–reprecipitation process. When the sintering temperature increased from 1400 to 1600°C, the thermal conductivity of SiC increased from 84 to 126 W/(m K), as a consequence of the grain growth. However, an increasing amount of the sintering additive increased the interfacial thermal resistance, resulting in a decrease of thermal conductivity of the materials. The highest thermal conductivity of 141 W/(m K) was obtained for the material having the largest SiC grains and an optimized amount of the additive at the grain boundaries and triple junctions. The proposed Pr3Si2C2-assisted liquid-phase sintering of SiC can be potentially used for the fabrication of SiC-based ceramic composites, where a low sintering temperature would inhibit the grain growth of SiC fibers.  相似文献   

3.
《Ceramics International》2022,48(15):21756-21762
Understanding the densification and grain growth processes is essential for preparing dense alumina fibers with nanograins. In this study, the alumina fibers were prepared via isothermal sintering at 1200, 1300, 1400, and 1500 °C for 1–30 min. The phase, microstructure, and density of the sintered fibers were investigated using XRD, SEM, and Archimedes methods. It was found that the phase transformation during the isothermal sintering enhances the densification of Al2O3 fibers in the initial stage, while the pores generated during the phase transformation retard the densification in the later period. The kinetics and mechanisms for the densification and grain growth of the fibers were discussed based on the sintering and grain growth models. It was revealed that the densification process of the fibers sintered at 1500 °C is dominated by the lattice diffusion mechanism, while the samples sintered at 1200–1400 °C are dominated by the grain boundary diffusion mechanism. The grain growth of the Al2O3 fibers sintered at 1200–1300 °C is governed by surface-diffusion-controlled pore drag, and that sintered at 1400 °C is dominated by lattice-diffusion-controlled pore drag.  相似文献   

4.
《Ceramics International》2023,49(16):26707-26718
Textured SiC with anisotropic crystallographic texture is proposed as a material with improved mechanical properties. Textured SiC was created via alignment of platelet seed particles during aqueous suspension material extrusion, also known as direct ink writing, and subsequent pressureless liquid phase sintering and annealing. The microstructure and texture of the SiC fabricated with and without 5 vol% platelet seeds, and with and without annealing at 2050 °C and 2150 °C was explored via SEM, XRD, and EBSD. All samples fabricated had over 95% theoretical density. Annealing leads to the development of large, high aspect ratio plate-shaped grains among a matrix of many finer, low aspect ratio grains. Higher annealing temperatures and addition of platelet seeds both increased the size of the large grains. Samples were found to be textured regardless of having platelet seeds. Via XRD and EBSD, unseeded SiC was found to have texture where the crystallographic direction [0001] had a preferred orientation perpendicular to the normal direction. This occurred for both direct ink written and cast SiC, so the texture development must have occurred during sintering, though the mechanism is unknown. For seeded SiC, platelet seeds aligned in direct ink writing seeded the grain growth to develop crystallographic texture. The texture was mainly influenced by the alignment of platelet seed particles via shear stresses in the print nozzle, causing a one-dimensional texture where [0001] is perpendicular to the printing direction. However, it was found that the texture was not the expected concentric alignment of platelet particles in direct ink writing, so the shear stresses in the nozzle are not solely responsible for the texture developed.  相似文献   

5.
Amosic-3 SiC/SiC composites were irradiated at 300 °C using 6 MeV Si ions to peak doses of 13 and 55 displacements per atom (dpa). The loss of amorphous carbon packets and the growth of SiC grains were simultaneously observed in Amosic-3 SiC fibers, using a combination of transmission electron microscopy (TEM) and Raman spectroscopy. A mechanism based on the grain growth theory was proposed to expound the relationship between the loss of carbon packets and the growth of SiC grains. Small and curved SiC grains can absorb surrounding carbon packets to grow themselves; at some point, these grains further grow at the expense of adjacent small SiC grains until their grain boundary became straight. TEM images were found to support the above mechanism.  相似文献   

6.
Zirconia-toughened mullite (SiC/ZTM) nanocomposites were prepared by a chemical precipitation method. The samples showed good sinterability and could be densified to >98.7% of the theoretical density at 1350°–1550°C. Because of the addition of mullite seeds in the starting powder and the pinning effects of ZrO2 and SiC particles on mullite grain growth, a fine-grained microstructure formed. Mullite grains were generally equiaxed for the sample sintered at 1400°C; whereas, for the sample sintered at 1550°C, most mullite grains took a needlelike morphology, and SiC particles were primarily located within mullite grains. The strength and toughness increased with the increasing sintering temperature, and reached their respective maximum of 780 MPa and 3.7 MPa·m1/2 for the sample sintered at 1550°C.  相似文献   

7.
To clarify the influence of impurities on the sintering of SiC powder, three 6H-SiC powder samples—with different levels of SiO2 and aluminum impurities—were sintered with additions of boron and carbon. The densification, grain growth, and transformation of 6H-SiC during sintering were studied qualitatively. The powder that contained the most SiO2 required the greatest amount of boron additive for complete densification. SiO2 apparently reacted with the boron additive and was consumed during sintering. The powder with the greater aluminum impurity level exhibited partial transformation of 6H-SiC to 4H-SiC, and the sintered SiC from this powder had elongated grains. The partial transformation in the SiC crystal accelerated non-equiaxial grain growth.  相似文献   

8.
Dense Sic ceramics were obtained by pressureless sintering of β-Sic and α-Sic powders as starting materials using Al2O3-Y2O3 additives. The resulting microstructure depended highly on the polytypes of the starting SiC powders. The microstructure of SiC obtained from α-SiC powder was composed of equiaxed grains, whereas SiC obtained from α-SiC powder was composed of a platelike grain structure resulting from the grain growth associated with the β→α phase transformation of SiC during sintering. The fracture toughness for the sintered SiC using α-SiC powder increased slightly from 4.4 to 5.7 MPa.m1/2 with holding time, that is, increased grain size. In the case of the sintered SiC using β-SiC powder, fracture toughness increased significantly from 4.5 to 8.3 MPa.m1/2 with holding time. This improved fracture toughness was attributed to crack bridging and crack deflection by the platelike grains.  相似文献   

9.
The growth kinetics of nanograins in Co3O4 nanofibers has been investigated. Individual fibers were made up of nanograins. The nanograins were observed to coalesce and grow at the expense of the smaller ones, similar to the phenomenon observed in the sintering process of bulk ceramics. The activation energy and the growth kinetics of nanograins were estimated, showing the dominant growth mechanism of nanograins to be likely related to a lattice diffusion process.  相似文献   

10.
采用等离子活化烧结(plasma activated sintering,PAS)制备SiC/20%(体积分数)h-BN复相陶瓷,研究了烧结工艺对复相陶瓷密度、抗弯强度、硬度,以及显微结构的影响,并对比分析了PAS与热压(hot-pressing,HP)烧结工艺不同烧结机理。结果表明:在1600℃保温3min PAS烧结与在1850℃保温1h HP烧结制备出的SiC/20% h-BN复相陶瓷具有相近的性能和微观结构,PAS烧结效率远高于HP。当引入20%微米级h-BN在烧结过程中抑制SiC晶粒长大,PAS快速烧结细化晶粒的效应在烧结SiC/20% h-BN复相陶瓷时被抑制。  相似文献   

11.
The distribution and orientation of platelet-shaped particles of α-alumina in a fine-grained alumina matrix is shown to template texture development via anisotropic grain growth. The textured microstructure ranges from 4 wt% oriented platelet particles in calcined samples to nearly 100% oriented α-Al2O3 grains after sintering at 1400°C. A CaO + SiO2 liquid phase creates favorable thermodynamic and kinetic conditions for anisotropic grain growth and grain reorientation during sintering. Important criteria for templated grain growth include (1) anisotropic crystal structure and growth, (2) high thermodynamic driving force for template grain growth, and (3) modification of diffusion in the system to continuously provide material to the anisotropically growing template grains.  相似文献   

12.
纳米ZrO2-微米Al2O3复合陶瓷中"内晶型"结构的形成与机理   总被引:6,自引:0,他引:6  
王昕  单妍  于薛刚  徐静  尹衍升  周玉 《硅酸盐学报》2003,31(12):1145-1149
考察了不同烧结状态的氧化错增韧氧化铝陶瓷(zirconia—toughened alumina,ZTA)的晶粒长大与“内晶型”形成的关系。烧结过程中,ZTA陶瓷中晶粒生长与温度、保温时间、第二相ZrO2含量有关,其中温度的影响最为显著。第二相粒子有沿主晶相晶界移动聚集的趋向。内晶结构的形成机理可概括为第二相粒子被夹在主相两晶粒之间不能移动,在随后的主晶相长大过程中,两晶粒共同晶界发生迁移或晶粒“合并”,将第二相粒子纳入晶粒内部。而没有被主相颗粒挤住的可移动的第二相粒子则聚集成较大的晶问第二相颗粒。  相似文献   

13.
《Ceramics International》2016,42(16):18612-18619
The synergetic effects SiC particles and short carbon fibers (Csf) as well as hot pressing parameters (sintering temperature, dwell time and applied pressure) on the grain growth of ZrB2-based composites were investigated. Taguchi methodology was employed for the design of experiments to study the microstructure and grain growth of ZrB2–SiC–Csf ceramic composites. Three hot pressing parameters and SiC/Csf ratio were selected as the scrutinized variables. The sintering temperature and SiC/Csf ratio were identified by ANOVA as the most effective variables on the gain growth of ZrB2-based samples. Removal of oxide impurities from the surface of starting particles by the reactant Csf, not only hindered the extraordinary grain growth of ZrB2 matrix, but also improved the sinterability of the ceramics. A fully dense ceramic with an average grain size of 8.3 µm was obtained by hot pressing at 1850 °C for 30 min under 16 MPa through adding 20 vol% SiC and 10 vol% Csf to the ZrB2 matrix. SEM observations and EDS analysis verified the in-situ formation of ZrC which can restrain the growth of ZrB2 particles, similar to the role of SiC, by the pinning of grain boundaries as another stationary secondary phase.  相似文献   

14.
A novel oriented attachment growth mechanism of nanograins has been suggested for spark plasma sintering and annealing of NiO nanopowder. A hierarchical microstructure built by cube-shaped nanograins was observed during pressure-less spark plasma sintering at temperatures above 1000 °C and when the powders were annealed in ambient atmosphere at and above 700 °C. Irrespective of the processing method used, a rotation assisted grain attachment of irregularly shaped nanocrystals results in such a microstructure with parallel epitaxy, twinning or line defects at the grain interface. The unique microstructural features and the governing factors for the attachment process have been discussed.  相似文献   

15.
This paper reviews investigations of silicon nitride–silicon carbide micro–nanocomposites from the original work of Niihara, who proposed the concept of structural ceramic nanocomposites, to more recent work on strength and creep resistance of these unique materials. Various different raw materials are described that lead to the formation of nanosized SiC within the Si3N4 grains (intragranular) and at grain boundaries (intergranular). The latter exert a pinning effect on the amorphous grain boundary phases in the silicon nitride and also act as nucleation sites for β-Si3N4, which limits grain growth during sintering. This finer microstructure results in strengths higher than for the monolithic silicon nitride. Intragranular SiC particles enhance strength and fracture toughness as a result of residual compressive thermal stresses within the nanocomposites. High temperature strength and creep resistance are also much higher than for monolithic silicon nitride and a few investigations of these topics are briefly reviewed and the proposed mechanisms are described. Within the context of other studies cited, work on Si3N4–SiC micro–nanocomposites by the current authors describes an aqueous processing route for better dispersion of commercial powders prior to sintering.  相似文献   

16.
Pure silicon carbide (SiC) ceramics were prepared through recrystallization sintering by using two types of SiC powder, with different particle sizes, as the raw materials. The effects of the fine powder content on the bulk density, porosity, flexural strength, and grain morphology were investigated. In the synthesis process, silicon nitride (Si3N4) was used as the sintering additive that decomposed and transformed into SiC to promote the growth of SiC grains. The added fine powder was exploited in the evaporation and condensation process and grain amalgamation caused by the movement of the grain boundaries. Thus, a dissimilar fine powder content modulated the microstructure and mechanical strength of the SiC ceramics. The results indicate that the bulk density and flexural strength increase to a maximum of 2.12 g/cm3, 44.2 MPa, respectively, when the fine powder content is 40 wt.%. Three kinds of grain morphologies, that is, uniform equiaxed grains, round, equiaxed grains, and hexagonal platelet grains, and the maximum average pore size (3.62 μm) are obtained when the fine powder content is between 0 wt.% and 60 wt.%. In addition, the main crystal phase 6H-SiC is partially converted to 4H-SiC when the fine powder content is up to 60 wt.%.  相似文献   

17.
The composite sol—gel (CSG) technology has been utilized to process SiC—Al2O3 ceramic/ceramic particulate reinforced composites with a high content of SiC (up to 50 vol%). Alumina sol, resulting from hydrolysis of aluminum isopropoxide, has been utilized as a dispersant and sintering additive. Microstructures of the composites (investigated using TEM) show the sol-originating phase present at grain boundaries, in particular at triple junctions, irrespective of the type of grain (i.e., SiC or Al2O3). It is hypothesized that the alumina film originating from the alumina sol reacts with SiO2 film on the surface of SiC grains to form mullite or alumina-rich mullite-glass mixed phase. Effectively, SiC particles interconnect through this phase, facilitating formation of a dense body even at very high SiC content. Comparative sinterability studies were performed on similar SiC—Al2O3 compositions free of alumina sol. It appears that in these systems the large fraction of directly contacting SiC—SiC grains prevents full densification of the composite. The microhardness of SiC—Al2O3 sol—gel composites has been measured as a function of the content of SiC and sintering temperature. The highest microhardness of 22.9 GPa has been obtained for the composition 50 vol% SiC—50 vol% Al2O3, sintered at 1850°C.  相似文献   

18.
The high temperature heat treatment of pure, different grain size mixtures and oxidized SiC powders has been studied under vacuum using the Knudsen cell mass spectrometric method in order to determine their vapor pressures and to study their morphology change with time. Various characterization methods – grain size distribution analysis, X-ray diffraction, Raman spectra and scanning electron microscopy – were used before and after heat treatment in the mass spectrometer in order to observe the growth of any possible connections between SiC grains. The present study shows that as long as silica was present as a layer on the SiC grains, connections growth could not be observed while during the active oxidation step obtained just after silica disappearance by vaporization as attested by mass spectrometry, the growth of SiC “like-necks” between the SiC grains occurred. Under active oxidation conditions the observed growth efficiency was better at the SiC–C phase limit.  相似文献   

19.
Continuous ceramic fibers with ultrahigh-temperature stability are in high demand for applications in advanced space propulsion and thermal protection systems. In this study, SiC nanograins stabilized Si–C–B–N ceramic fibers were prepared using chemically modified polyborosilazane via a polymer-derived method. The fabricated Si–C–B–N fibers exhibited a rather high tensile strength of approximately 1.8 GPa and a high strength retention of approximately 90% after annealing at 2100°C for 0.5 h under a nitrogen atmosphere. The ultrahigh-temperature stability can be contributed to the presence of thermodynamically stable SiC nanograins and the encapsulation of SiC nanograins by the BN(C) phase and amorphous Si–C–B–N matrix. Our work offers a convenient strategy for preparing Si-based ceramic fibers with ultrahigh-temperature stability at beyond 2000°C.  相似文献   

20.
Microstructure development in Bi0.5(Na0.5K0.5)0.5TiO3 prepared by a reactive-templated grain growth process was dependent on the sizes of platelike Bi4Ti3O12 (BiT) and equiaxed TiO2 particles used as starting materials. Calcined compacts were composed of large, platelike template grains and small, equiaxed matrix grains, the sizes of which were determined by those of the BiT and TiO2 particles, respectively. Texture was developed by the growth of template grains at the expense of matrix grains during sintering, and a new mechanism of grain growth was proposed on the basis of microstructure observation. The grain growth rate was determined by the template and matrix grain sizes, and a dense ceramic with extensive texture was obtained using small BiT and TiO2 particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号