首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mechanical properties of welded SiC-ZrB2 and SiC-ZrB2-ZrC ceramics were measured up to 1700 °C. Commercial powders were hot pressed, machined into coupons, and preheated to 1600 °C before joining the ceramics using either tungsten inert gas welding or plasma arc welding. Toughness of the parent materials was 3–4 MPa*m1/2 which decreased after welding to 2–2.5 MPa*m1/2. Strength of the SiC-ZrB2-ZrC parent material was ~700 MPa at 25 °C, ~300 MPa at 1700 °C, and retained 40–60% of this strength once welded. Strength of the SiC-ZrB2 parent material was ~600 MPa at 25 °C and 1700 °C and retained 20–30% of this strength once welded. Griffith analysis indicated that the strength in the parent materials was controlled by the size of SiC clusters while strength of welds was controlled by the size of pores in fusion zones. Therefore, removal of pores in produced fusion zones should be investigated to improve strength of future ceramic welds.  相似文献   

2.
Molybdenum and a molybdenum alloy were fusion welded to ZrB2-based ceramics to determine if the electrical and thermal properties of the metals and ceramics affected their weldability. Commercial ceramic powders were hot pressed, machined into coupons, and preheated to 1600 °C before joining the ceramics to commercial metals using plasma arc welding. Weldability varied as indicated by the range of porosity observed within the fusion zones. Measured thermal and electrical properties appeared to have little to no effect on the weldability of metal-ceramic welds despite the large range of values measured across each property. Differences in melting temperatures between metal and ceramic coupons did affect weldability by changing the weld penetration depth into ceramic coupons. Future studies on metal-ceramic welds are suggested to investigate the effect that work function, melt viscosity, wetting, or other properties have on weldability.  相似文献   

3.
A silicon carbide‐based ceramic, containing 50 vol% SiC, 35 vol% ZrB2, and 15 vol% ZrC was plasma arc welded to produce continuous fusion joints with varying penetration depth. The parent material was preheated to 1450°C and arc welding was successfully implemented for joining of the parent material. A current of 138 A, plasma flow rate of ~1 L/min or ~0.5 L/min, and welding speed of ~8 cm/min were utilized for repeated joining, with full penetration fusion zones along the entire length of the joints. Solidification was determined to occur through the crystallization of β‐SiC (3C), then the simultaneous solidification of SiC and ZrB2, and lastly through the simultaneous solidification of SiC, ZrB2, and ZrC through a ternary eutectic reaction. The ternary eutectic composition was determined to be 35.3 ± 2.2 vol% SiC, 39.3 ± 3.8 vol% ZrB2, and 25.4 ± 3.0 vol% ZrC. A dual fusion zone microstructure was always observed due to convective melt pool mixing. The SiC content at the edge of the fusion zone was 57 vol%, while SiC content at the center of the fusion zone was 42 vol% although the overall SiC content was still nominally 50 vol% throughout the entire fusion zone.  相似文献   

4.
Ultra-high temperature ceramics (UHTCs) are a group of advanced ceramic materials that possess excellent high temperature capabilities, which make them especially suitable for extreme environment engineering applications. As an effective assembling method, joining is frequently required for fabricating sophisticated structures for such applications due to the excessive challenges and costs in producing near-net shapes. Here, we introduce a promising new joining technique to effectively join UHTCs called Instantaneous Nanowelding, which uses direct electric current assisted rapid Joule heating to instantaneously bond hafnium diboride (HfB2) to zirconium diboride (ZrB2) in 1 s down to atomic scale. Our approach is analogous to high temperature spot welding, and the entire process is complete in 10 min, and the instant diffusion occurs in 1 s. Seamless HfB2/ZrB2 interfaces are formed at 1750 for a duration of 1 s. A series of characterizations are done at the interfaces using techniques including SEM, WDS, EBSD, and S/TEM to observe ZrxHf1−xB2 solid solution formation. Highly coherent transition with perfect lattice alignment at atomic scale from ZrB2 to HfB2 is observed using S/TEM, meaning that the two materials are brought to atomic contact.  相似文献   

5.
Materials capable of oxidizing in a protective manner at ultrahigh (>1700 °C) temperatures are needed to push beyond this barrier defined by SiC. Although possessing attractive mechanical properties and oxidation resistance, SiC-based materials are ultimately temperature limited by the melting point of SiO2. The vast array of ultra-high and high temperature ceramic literature indicates the majority of these materials, like borides, carbides, MAX-phases, and high-entropy ceramics, fall woefully short regarding oxidation resistance. However, for specific applications, like low-orbit aeropropulsion, high ballistics coefficient atmospheric re-entry, and hypersonic cruise, there are a few promising materials. In the present review, oxidation criteria are gathered to build application specific heuristics and are then applied to a multitude of ultra-high temperature ceramics to gauge material efficacy. Discussion of oxidation kinetics, mechanisms and reaction products is offered for each material, identifying strengths, weaknesses, and the remaining gaps in our knowledge.  相似文献   

6.
《Ceramics International》2022,48(7):8852-8881
Ultra-high temperature ceramics (UHTCs) have played a significant role in fulfilling demands for the thermal protection system (TPS) in the aerospace sector, however, a promising candidate has not emerged yet. This critical review provides typical inconsistencies and new perspectives related to UHTCs in terms of: (i) material and processing: i.e., sinterability, reinforcements, microstructural evolution, (ii) properties and performance correlation with the processing conditions and resulting microstructure, and (iii) outlook on the most promising ZrB2-HfB2-SiC-based composites as potential candidates for hypersonic leading edge and re-entry structures. An optimal selection of the content, size and reinforcing phase (such as silicides, refractory carbides, and carbon-based, etc.) is mandated in upgrading the thermo-mechanical performance of UHTCs to sustain elevated temperature (1700 °C), exhibiting flexural/fracture strength of >300 MPa, high thermal conductivity >14.5 Wm?1K?1, and high oxidation resistance (<80 gm?2 over 2 h at 1400 °C). From emphasis on the powder purity, and sintering additives on affecting the densification, mechanical properties and high temperature oxidation, improvements in the functional performance of UHTCs are carried forward with emphasis mainly on borides and carbides. Emergence of SiC as most promising sintering additive with optimal content of ~20 vol%, and with supplemented HfB2 addition in ZrB2-HfB2-SiC based UHTCs have exhibited higher oxidation resistance and may serve as conceivable entrants for hypersonic vehicles. Further, the review leads the reader to developing new materials (including silicides, MAX phases, and high entropy UHTCs), incorporating novel strategies like designing layered structures or functionally graded materials (FGM), and effective joining to allow the integration of smaller components into scaled up structures. On one hand, where plasma arc-jet exposure mimics high heat-flux exposures, the utilization of multi-length-scale computational modeling (such as finite element methods, density functional theory, ab initio etc.) allows assessing the material performance under dynamic changes (of variable partial pressure, temperatures, gradation, etc.) towards perceiving new insights into the structural stability and thermo-mechanical properties of UHTCs. This review critically underlines the present state of the art and guides the reader towards the futuristic development of new class of high-temperature materials for TPSs.  相似文献   

7.
《Ceramics International》2023,49(4):5944-5950
HfB2-based ceramics, such as HfB2-SiC, are promising materials of neutron control rods. Under nuclear conditions, the interfacial compatibility between the HfB2-SiC control rod and the guide tube (made of Zr-4 alloy) is critical in the operation. The present study demonstrated the high compatibility of the two heterogeneous materials even at 1400 °C. The formation of an in-situ assembled triple diffusion layer with stable phases and dense structures largely improved the interface compatibility. In addition, the as-produced phases with unique microstructures were organized at the interface. ZrSi formed typical columnar crystals with strong [001] fiber texture, which extended in the direction favorable to the interface. ZrB2 grains grew as needle shapes and entered the Zr-4 alloy substrate. These unique morphologies clearly revealed an interface with strong stability and high compatibility. The results provide the basis for the application of HfB2-based ceramics in nuclear infrastructures.  相似文献   

8.
Dense ZrB2–SiC (25–30 vol%) composites have been produced by reactive hot pressing using stoichiometric Zr, B4C, C and Si powder mixtures with and without Ni addition at 40 MPa, 1600 °C for 60 min. Nickel, a common additive to promote densification, is shown not to be essential; the presence of an ultra-fine microstructure containing a transient plastic ZrC phase is suggested to play a key role at low temperatures, while a transient liquid phase may be responsible at temperatures above 1350 °C. Hot Pressing of non-stoichiometric mixture of Zr, B4C and Si at 40 MPa, 1600 °C for 30 min resulted in ZrB2–ZrCx–SiC (15 vol%) composites of 98% RD.  相似文献   

9.
Joining is crucial for ultra-high temperature ceramics (UHTCs) to be used in demanding environments due to the difficulty in manufacturing large and complex ceramic components. In this study, ZrB2-SiC composite UHTCs parts were joined via Ni foil as filler, and the mechanical properties and oxidation behaviour of the fabricated ZrB2-SiC/Ni/ZrB2-SiC (ZS/Ni/ZS) joint were investigated. Firstly, dense ZrB2-SiC composites were prepared from nano-sized powders by spark plasma sintering (SPS). The ZrB2-SiC parts were then joined using SPS. Furthermore, the elastic modulus, hardness, shear strength and high temperature oxidation behaviour of the ZS/Ni/ZS joint were examined to evaluate its properties and performance. The experimental results showed that the ZrB2-SiC parts were effectively joined via Ni foil using SPS and the resultant microstructures were free from any marked defects or residual metallic layers in the joint. Although the elastic modulus and hardness in the joining zone were lower than those in the base ZrB2-SiC ceramics, the shear strength of the joint reached ∼161 MPa, demonstrating satisfactory mechanical properties. Oxidation tests revealed that the ZS/Ni/ZS joint possesses good oxidation resistance for a wide range of elevated temperatures (800–1600 oC), paving the way for its employment in extreme environments.  相似文献   

10.
The effect of chromium diboride addition on the densification process and oxidation behavior of two ZrB2-MoSi2 and ZrB2-SiC baseline systems was studied. CrB2 was beneficial in lowering the sintering temperature owing to the tendency of its oxide to react with MoSi2 and SiC forming low-melting phases that helped the powder consolidation. Oxidation at 1500 °C induced the formation of further boron oxide as first consequence. In one case, when CrB2 was combined with MoSi2, an improved oxidation resistance was observed due to the stabilization of Cr-borides in the subscales saturated with B2O3. In the other case, when it was combined with SiC, the excessive low viscosity of the borosilicate glass facilitated the consumption of a thicker portion of materials as compared to the ZrB2-SiC reference.  相似文献   

11.
The effect of ZrC on the mechanical response of ZrB2 ceramics has been evaluated from room temperature to 2000 °C. Zirconium diboride ceramics containing 10 vol% ZrC had higher strengths at all temperatures compared to previous reports for nominally pure ZrB2. The addition of ZrC also increased fracture toughness from 3.5MPam for nominally pure ZrB2 to 4.3MPam due to residual thermal stresses. The toughness was comparable with ZrB2 up to 1600 °C, but increased to 4.6MPam at 1800 °C and 2000 °C. The increased toughness above 1600 °C was attributed to plasticity in the ZrC at elevated temperatures. Electron back-scattered diffraction analysis showed strong orientation of the ZrC grains along the [001] direction in the tensile region of specimens tested at 2000 °C, a phenomenon that has not been observed previously for fast fracture (crosshead displacement rate = 4.0 mm min?1) in four point bending. It is believed that microstructural changes and plasticity at elevated temperature were the mechanisms behind the ultrafast reorientation of ZrC.  相似文献   

12.
The oxidative degradation of ZrB2 ceramics is the main challenge for its extensive application under high temperature condition. Here, we report an effective method for co-doping suitable compounds into ZrB2 in order to significantly improve its anti-oxidation performance. The incorporation of SiC and WC into ZrB2 matrix is achieved using spark plasma sintering (SPS) at 1800?°C. The oxidation behavior of ZrB2-based ceramics is investigated in the temperature range of 1000?°C–1600?°C. The oxidation resistance of single SiC-doped ZrB2 ceramics is improved due to the formation of silica layer on the surface of the ceramics. As for the WC-doped ZrB2, a dense ZrO2 layer is formed which enhances the oxidation resistance. Notably, the SiC and WC co-doped ZrB2 ceramics with relative density of almost 100% exhibit the lowest oxidation weight gain in the process of oxidation treatment. Consequently, the co-doped ZrB2 ceramics have the highest oxidation resistance among all the samples.  相似文献   

13.
The polymer-derived-ceramic (PDC) route has been widely used to fabricate the transition-metal carbides (TMCs). Previously reported works focused mainly on the synthesis of the single or binary TMCs, while the synthesis of the ternary or more component TMCs was rarely reported. Herein, a class of the ternary TMCs, namely (Nb1/3Zr1/3Ta1/3)C solid-solution ceramics, was successfully synthesized via PDC route for the first time. The as-synthesized ceramics exhibited the particle-like morphology with an average particle size of ~250 nm and showed a single rock-salt crystal structure of metal carbides. At the same time, they had high compositional uniformity from nanoscale to microscale. In addition, they possessed low-oxygen impurity content of 0.79 wt% and moderate-carbon impurity content of 8.98 wt%. Such work provides a novel route to fabricate the ternary or more component TMCs.  相似文献   

14.
The wettability and infiltration of molten ZrSi2 and ZrSi2-Lu2O3 alloys into Cf/SiC and B4C-infiltrated Cf/SiC composites were investigated to understand the interfacial interactions that occur during the development of Cf/SiC-ZrC and Cf/SiC-ZrB2-ZrC-Lu2O3 materials. A significant evaporation of Si from the liquid affected the wetting behaviour of the alloy when tested in a vacuum at 1670 °C. The better wetting and spreading of the alloy over the surface was observed for the composites with lower overall porosity (12 %). On the other hand, the formation of an outer dense layer, followed up by the uniform infiltrated region up to ~ 1 mm was observed for the Cf/SiC with higher porosity (21 %). The infiltrated alloy reacted with SiC matrix to form ZrC or with B4C-infiltrated SiC matrix to form ZrB2-ZrC-SiC. The Lu2O3 particles were not wetted by the melt, and were pushed away of the reaction zone by the solidification front.  相似文献   

15.
《Ceramics International》2020,46(14):22102-22107
Multiphase ceramics like ZrC/SiC are promising candidates as ultra-high temperature ceramics for applications in extreme environments. In this work, non-oxide precursors for ZrC/SiC and HfC/SiC composite ceramics were synthesized by a one-pot reaction of three components – metal source, silicon source, and activating reagent. Molecular structures of the precursors were identified by 1H NMR and FTIR. Transformation process of the precursors to the ZrC/SiC ceramics was investigated via XRD and SEM. After heat-treatment at 1600 °C under argon, the obtained ZrC/SiC and HfC/SiC ceramics features a particle size of 100–200 nm and high metal content without excess carbon. The elemental composition of pyrolyzed ceramics can be tuned by varying the ratio of the reagents in the synthesis of precursors. This strategy also inspires a facile fabrication of composite ceramics with other elemental compositions.  相似文献   

16.
《Ceramics International》2017,43(17):14798-14806
The oxidation behaviors of tantalum carbide (TaC)- hafnium carbide (HfC) solid solutions with five different compositions, pure HfC, HfC-20 vol% TaC (T20H80), HfC- 50 vol% TaC (T50H50), HfC- 80 vol% TaC (T80H20), and pure TaC have been investigated by exposing to a plasma torch which has a temperature of approximately 2800 °C with a gas flow speed greater than 300 m/s for 60 s, 180 s, and 300 s, respectively. The solid solution samples showed significantly improved oxidation resistance compared to the pure carbide samples, and the T50H50 samples exhibited the best oxidation resistance of all samples. The thickness of the oxide scales in T50H50 was reduced more than 90% compared to the pure TaC samples, and more than 85% compared to the pure HfC samples after 300 s oxidation tests. A new Ta2Hf6O17 phase was found to be responsible for the improved oxidation performance exhibited by solid solutions. The oxide scale constitutes of a scaffold-like structure consisting of HfO2 and Ta2Hf6O17 filled with Ta2O5 which was beneficial to the oxidation resistance by limiting the availability of oxygen.  相似文献   

17.
Silicon carbide (SiC) is a candidate material for high-temperature structural aerospace applications due to its thermal and mechanical properties. Joining technologies enable the fabrication of complex shaped components needed for such applications. Various interlayers and processing conditions were used to form diffusion bonds between SiC substrates. Interlayers of titanium (Ti) foils and physically vapor deposited Ti coatings were used in the thicknesses of 10 and 20 μm with processing hold times of 1, 2, and 4 h. Polished cross sections of resulting diffusion bonds were analyzed using scanning electron microscopy (SEM) coupled with energy-dispersive spectroscopy (EDS) and using transmission electron microscopy (TEM). From the TEM analysis, selected-area diffraction patterns for Ti3SiC2, Ti5Si3Cx, and TiSi2 were observed. Moreover, TiC and an unknown phase were present in diffusion bonds formed with metallic titanium foil. From the SEM/EDS analyses, intermediate phases of Ti5Si3Cx and TiC were found to be present in microcracked diffusion bonds. With the thinner Ti interlayers and/or longer processing time, microcracking was alleviated or eliminated due to the presence of the more stable and lower thermal expansive phases of Ti3SiC2 and TiSi2. Detailed analysis of microstructures and the probable phases that formed in the bonded regions is presented.  相似文献   

18.
(Hf1-xZrx)B2 solid solution powders were synthesized by two methods. First, solution-based processing of HfCl4, ZrCl4, sucrose, and H3BO3 was conducted followed by heat treatment in Argon to carry out the carbothermal reduction (CTR) reaction to form the diboride powders. Alternatively, in the so-called borohydride reduction (BHR) method, HfCl4, ZrCl4 and NaBH4 were mixed in an Argon glove box followed by heat treatment in Argon at 700?1500 °C. The synthesized powders were characterized by XRD, SEM, TEM, EDS, and TGA, and the influence of different parameters such as starting composition, heat treatment temperature and time on products characteristics were revealed. Both CTR and BHR solid solution powders were then consolidated within ~5 min in a homemade flash sintering (FS) setup. The composition, microstructure, hardness, and thermal-oxidation properties of flash sintered ceramics were characterized, and the implication of this study and directions for future research were discussed.  相似文献   

19.
In order to avoid the property degradation resulting from high-temperature joining process, nano-infiltrated transient eutectoid (NITE) phase with the Al2O3-Ho2O3 as the joining adhesives was adopted to join silicon carbide (SiC) ceramics with the attempts to lower down the joining temperature. The liquid-phase-sintered silicon carbide (LPS-SiC) specimens were joined at 1500-1800°C by spark plasma sintering (SPS) under the pressure of 20 MPa. The results of the shear test and microstructure observation showed that the joining process could be finished at a relatively lower temperature (1700°C) compared to other NITE-phase joining. In contrast to the shear strength of 186.4 MPa derived from the SiC substrate, the joint exhibited the shear strength of 157.8 MPa with the fully densified interlayer.  相似文献   

20.
The in-situ exothermic reactions between ZrC0.8, B4C and Si have assisted densification and allowed to obtain fully dense ZrB2-31 wt.%SiC ultra-high temperature ceramics within 6 min at 1750 °C. The use of zirconium carbide instead of metallic zirconium in the green body obviated the possibility of in-situ SHS process and allowed to apply the pressure at low temperatures. The latter provided a first densification stage just above 1050 °C. A slight carbon excess was created in the green body to preserve the carbon nanotubes. The developed reactive hot pressing route (1830 °C, 3 min, 30 MPa) has been successfully used to obtain ZrB2-SiC ceramics containing 8 vol.% of multi-wall carbon nanotubes (MW-CNT). The carbon nanotubes survived the thermal cycle and could be clearly observed in the sintered ceramics. The CNT addition improved the fracture toughness of the composite from 4.3 MPa m1/2 for ZrB2-31 wt.%SiC to 6.8 MPa m1/2 for ZrB2-29 wt.%SiC-CNT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号