首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(Ce0.001Y0.999)3Al5O12 and (Ce0.001Y0.999)3(CrxAl1−x)5O12 (x=0.001−0.005) transparent ceramics were synthesized by the solid state reaction and vacuum sintering and their optical properties were measured. High quality white light was obtained when the Ce:YAG/Ce,Cr:YAG dual-layered composite ceramic was directly combined with commercial blue LED chip. A maximum luminous efficacy exceeding 76 lm/W at a low correlated color temperature of 4905 K was obtained. The color temperature can be controlled by variations of Cr3+ concentration and the ceramic thickness. Hence, the Ce:YAG/Ce,Cr:YAG dual-layered composite phosphor ceramic may be a promising candidate for white LEDs.  相似文献   

2.
《Ceramics International》2023,49(2):2051-2060
In the high-power white light LEDs/LDs area, obtaining phosphor-converted materials with high thermal stability and high luminous emittance with proper blue/yellow light ratio has been the main challenge in recent years. In this study, a group of (CexY1-x)3(ScyAl1-y)5O12 transparent ceramics with high optical quality were proposed to rise to that challenge. Their spectra were regulated by incorporating Sc3+, showing blue shifted emission bands (peak position from 554 nm–538 nm), blue shifted excitation bands (462–445 nm) and narrowed full width at half maxima (120–112 nm). Significantly, the prepared Ce:YScAG transparent ceramics (TC) exhibited decent thermal quenching performance with the photoluminescence intensity at 150 °C maintaining 88.7% of its original value at room temperature. The Sc incorporation impacted the atoms’ occupation and distance, crystal field splitting and energy band structure. Under remote LD excitation mode, the luminous efficiency of the prepared Ce:YScAG TC can achieve 164.8 lm/W. And even if the Ce3+ doping reaches 2.0 at%, the LE can still maintain 117.8 lm/W, exhibiting decent concentration quenching characteristic. Consequently, Ce:YScAG TCs have great potential as promising phosphor-converted materials in future high-power LED and LD white lighting.  相似文献   

3.
《Ceramics International》2023,49(15):24703-24711
Ce/Mn/Cr: Y3Al5O12 transparent ceramics with a pure garnet structure and a high color rendering index were prepared by a solid-state reaction method. Mn2+ and Cr3+ enhance the emission between 500 and 700 nm and expand the conventional Ce: YAG phosphors spectrum. The Ce3+ can work both, as activators and sensitizers, and the intense energy transfer from Ce3+ to Mn2+/Cr3+ is realized through the non-radiative and radiative processes. In the sample with the optimized doping concentration the high color rendering index (CRI) value of 75.3 can be achieved under a 450 nm laser diode excitation. The chromaticity coordinates can be tuned from (0.3125, 0.3232) to (0.2917,0.2851) by varying the doping concentration. With the increasing Mn2+/Cr3+ doping concentration, the lifetime of Ce3+, quantum efficiency and luminous efficiency are all gradually decreased. This work effectively offers a scheme for realizing the high color rendering performance of phosphor-converted transparent ceramics in white LEDs/LDs.  相似文献   

4.
YAG:Ce transparent ceramics with high luminous efficiency and color render index were prepared via a solid state reaction-vacuum sintering method. Cr3+and Pr3+ were applied to expand the spectrum of YAG:Ce transparent ceramics. As prepared ceramics exhibit luminescence spectrum ranging from 500 nm to 750 nm, which almost covers full range of visible light. After the concentration optimization of Ce3+, Pr3+ and Cr3+, high quality white light was obtained by coupling the YAG:Ce,Pr,Cr ceramics with commercial blue LED chips. Color coordinates of the YAG:Ce,Pr,Cr ceramics under 450 nm LED excitation vary from cold white light to warm white light region. The highest luminous efficiency of WLEDs encapsulated by transparent YAG:Ce,Pr,Cr ceramic was 89.3 lm/W, while its color render index can reach nearly 80. Energy transfers between Ce3+  Pr3+ and Ce3+  Cr3+ were proved in co-doped ceramic system. Transparent luminescence ceramics accomplished in this work can be quite prospective for high power WLEDs application.  相似文献   

5.
Transparent Ce:YAG ceramics via Cu2+ incorporating annealed at 1450?°C were successfully fabricated by the solid-state method to probe their potential applications in white light-emitting diodes (LEDs). The influence of Cu2+ concentration on the microstructure and optical properties of the Ce:YAG transparent ceramics were systematically investigated. The as-prepared ceramics possessed clean grain boundaries and homogeneous grain size distribution ranging from 3.7 to 6.5?µm. With the addition amount of Cu2+ increased, the red component of ceramics gradually increased and then decreased, it reached a maximum of 13.0% at 1.5?at% Cu2+ incorporation. By combining with commercially blue LED chips (465?nm) directly, the obtained optimal chromaticity coordinates (CIE) and correlated color temperature (CCT) of ceramics were (x?=?0.3335, y?=?0.3412) and 5450?K, respectively, while its color render index (CRI) was nearly 70 at the thickness of 1.0?mm. Therefore, this study provided an efficient approach to tailor the luminescence property of Ce:YAG ceramic for white LEDs.  相似文献   

6.
Intense green emission is extremely significant to the color rendering index (CRI) of white LEDs. Various green-emitting YLuAG:Ce phosphor ceramics were successfully prepared by vacuum sintering. The effects of Lu3+ doping on structure and luminescence property were investigated in detail. In comparison with YAG:Ce, YLuAG:Ce ceramics own smaller grain size, better luminescence performance and higher thermal stability. The photoluminescence (PL) intensity of YLuAG:Ce ceramics increases by 23.6 % due to the “light scattering enhanced effect”. Furthermore, the Ce3+ emission is obviously blue-shifting from 533 nm to 519 nm, and the intensity of YLuAG:Ce ceramics reduces only about 8.9 % at 250 °C, showing better thermal stability (vs 11.1 % of YAG:Ce). The LE of LED packaged by YLuAG:Ce ceramic is up to 148.88 lm/W when the doping Lu3+ y is 2.1. The above results show that tailored YLuAG:Ce phosphor ceramic is a potential green-emitting color converter for high-power LEDs (hp-LEDs).  相似文献   

7.
The microstructures and optical properties of Ce,Mg:Lu3Al5O12 scintillator ceramics are investigated with particular focus on the effect of postannealing in air from 1000 to 1450°C. The formation of Al2O3 clusters after annealing above 1300°C is evidenced by scanning electron microscopy. The presence of this secondary phase is tentatively explained by the occurrence of Ce and Mg evaporation, proved by inductive coupled plasma optical emission spectrometry measurements, followed by defect diffusion and clustering during high temperature annealing. Meanwhile, optical investigations including absorption, X-ray induced luminescence, light yield, scintillation decay, and thermoluminescence prove the positive role of post-annealing that leads to a brighter and faster scintillation emission. This behavior is associated to the removal of oxygen vacancies occurring during such treatments. In parallel, the partial conversion of Ce3+ ions into Ce4+ is also observed as a consequence of annealings and the role of Ce4+ ions in the scintillation process is discussed.  相似文献   

8.
Ce,Ca:LuAG scintillation ceramics with different Ca2+ co-doping concentrations were prepared by the solid-state reaction method. The concentration of Ce3+ was fixed at 0.3 at% and the concentration of Ca2+ ranged from 0 to 1.2 at%. We systematically studied how the Ca2+ concentration affects the optical quality of Ce,Ca:LuAG ceramics by influencing the microstructure in the vacuum sintering and HIP post-treatment. Good optical transmittance could be obtained with Ca2+ concentrations between 0.05 and 0.8 at%, which reached 76.0–81.9 % at 520 nm. The PL and scintillation decay times decrease with increasing Ca2+ concentration up to 0.6 at% with no clear trend above this value. The light yield (LY) values at different shaping times decrease with increasing Ca2+ concentration but the fast scintillation component (LY0.5 μs/ LY3.0 μs) increases significantly from 79 % to 97 %. The co-doping of Ca2+ also reduces the afterglow level by more than one order of magnitude.  相似文献   

9.
ABSTRACT

The crystal structures and optical properties of 5% 6Li:Ce0.09Y2.91Al5O12 transparent ceramics prepared by solid-state reaction with different vacuum sintering temperature were investigated in this paper. The results reveal that with the increasing of sintering temperature, the transmittance of 6Li,Ce:YAG ceramics increases from 36% (1680°C) to 82% (1780°C) at 1000?nm, and the intensity of absorption peaks at 340 and 460?nm increases. The emission peak wavelengths of 6Li:Ce0.09Y2.91Al5O12 ceramics have been measured as 534.5?nm, and there is no red shift. The high transmittance and emission peak (at 534.5?nm) suggested that this material could be a candidate for neutron detection applications.  相似文献   

10.
Yellow-emitting YAG:Ce transparent ceramic is recognized as an ideal color converter in high-power blue LEDs and LDs, but the absence of scattering centers in its microstructure leads to a low light extraction efficiency and poor light uniformity. Here, taking advantage of the scattering effect and the transparency of YAG:Ce ceramics, Ce-free YAG phase was used as a second component to form a composite with YAG:Ce phosphor. The sintered YAG:Ce-YAG ceramic possessed a high transparency of ~63 % and a thermal conductivity of 8.9 Wm?1 K?1. Due to its beneficial thermal properties and high external quantum efficiency of 70.2 %, the YAG:Ce-YAG ceramic could be excited under a high blue-laser flux density of up to 9.60 W/mm2 and showed a luminous emittance of 1220 lm/mm2. Due to light scattering arising from the slightly different refractive indices of the two phases, the designed YAG:Ce-YAG ceramic showed better lighting effects than a single-phase transparent YAG:Ce ceramic.  相似文献   

11.
High-energy physics community is looking for a hard, fast, and low-cost scintillation material, and Ce:Lu3Al5O12 (Ce:LuAG) ceramic is one of the competitive candidates. This work presents Ce,Ca:LuAG scintillation ceramics with good optical quality, and the influence of Ce and Ca concentrations on optical and scintillation properties was fully analyzed. At relatively low level of Ce concentration, the less Ca2+ content is needed to achieve a significant intensity increase in fast scintillation component while maintaining a relatively high light yield (LY). The introduction of only 0.1 at% Ca2+ could increase the LY0.5 μs/LY3.0 μs from 79.9% to 96.1% in Ce,Ca:LuAG ceramics of 0.1 at% Ce. First-principles investigations are further performed to reveal the tuning mechanisms of the scintillation properties of LuAG by Ce and Ca codoping. We show that the Fermi level shifts down with Ca codoping, which increases the Ce4+ content and decreases the depth of the electron traps (VO), resulting to a faster decay. Moreover, the formation preference of Ca-VO complexes over Ce-VO leads to the suppression of the non-radiative decay of Ce via VO. In summary, our study demonstrates the realization of the performance tuning of LuAG via Ce and Ca codoping.  相似文献   

12.
As a promising replacement for nitride red phosphors, Ce: Y3(Mg1.8Al1.4Si1.8)O12 (Ce: YMASG) ceramic phosphors have attracted significant attention recently for their advantages in inorganic encapsulation and massive red-shifting of Ce3+ emission. In this work, Ce: YMASG with different doping concentrations of Ce3+ and Al2O3, was fabricated by vacuum sintering to investigate its effects on the elimination of the impurity phase and the enhancement of the luminescent properties of white light-emitting diodes (w-LEDs). It was discovered that the emission wavelength redshifts from 592 to 606 nm as the Ce3+ concentration increases, while at 450 K, the emission intensity deteriorates from 0.47 to 0.36 of its initial value. The Rietveld analysis revealed the presence of an impurity phase of Y4MgSi3O13 with a concentration of 17.021 wt% in Ce: YMASG. With the introduction of Al2O3, the impurity phase was eliminated from the matrix completely, the emission peak shifted to a shorter wavelength, and the thermal stability was greatly improved. When the correlated color temperature was controlled at around 3000 K in the packaged w-LEDs, the commission international de l'éclairage (CIE) chromaticity coordinates shifted toward the bottom left corner of the diagram with increasing concentration of Ce3+. Conversely, the luminous efficiency (LE) increased from 36 lm/W to 58.6 lm/W as the concentration of Al2O3 increased from 0 to 10 wt%, which demonstrated the application prospect of the fabricated phosphor in warm w-LEDs.  相似文献   

13.
Ce3+ doped Lu3Al5O12 (Ce:LuAG) ceramics were fabricated by the solid-state reaction method through spark plasma sintering (SPS) from 1350 °C to 1700 °C for 5 min at a pressure of 50 MPa using micro powders. The average grain size of the SPSed ceramics gradually grew from 0.42 µm (1400 °C) to 1.55 µm (1700 °C), which is nearly one order of magnitude lower than that of vacuum sintered (VSed) Ce:LuAG ceramics (~24.6 µm). Characteristic Ce3+ emission peaking at around 510 nm appeared and 92% photoluminescence intensity of room temperature can be reserved at 200 °C revealing excellent thermal stability. The maximum radioluminescence intensity reached around 3 times of VSed Ce:LuAG ceramics and 7.8 times of BGO crystals. The maximum scintillation light yield under γ-ray (137Cs) excitation reached 9634 pho/MeV @ 2 μs. It is concluded that SPS technology is a feasible way to develop Ce:LuAG ceramics and further optical enhancement can be expected.  相似文献   

14.
Ce,Mg:LuAG scintillation ceramics with Ce dopant content ranging from 0.025?at.% to 0.3?at.% and constant 0.2?at.% Mg codoping were fabricated by solid-state reaction. The effects of Ce concentration and annealing conditions on the microstructure, optical quality and scintillation properties are studied in great details. Lattice parameters as well as the absorption, photoluminescence, radioluminescence and thermoluminescence characteristics are investigated as a function of Ce content. Both the photoluminescence and scintillation decays are measured as well in order to study re-absorption and concentration quenching processes. In addition, an enhanced positive effect of air annealing on radioluminescence intensity and light yield is put in evidence. Moreover, the role of the charge transfer absorption of Ce4+ is investigated. Thermoluminescence measurements are performed to investigate the influence of both air annealing and Ce concentration on defects acting as traps. Finally, the correlations among steady state scintillation efficiency, light yield, thermoluminescence and Ce3+ concentration are found and discussed.  相似文献   

15.
Nanometer and submicron-sized YAG:Ce phosphor powders were prepared by spray pyrolysis from the spray solutions with ethylenediaminetetraacetic acid (EDTA). The precursor powders with hollow and thin wall structure turned to the fine-sized YAG:Ce phosphor powders after post-treatment at high temperatures of 1400 and 1500 °C. The mean size of the phosphor powders post-treated at a temperature of 1500 °C was 0.72 μm. The white LEDs formed from the YAG:Ce phosphor powders post-treated at 1400 and 1500 °C showed (0.2781, 0.2871) and (0.2731, 0.2795) on the CIE chromaticity diagram, and about 78.20 and 79.04 of Ra. The luminous efficiency of the white LED formed from the commercial YAG:Ce phosphor powders was 84.36 lm/W. However, the luminous efficiencies of the white LEDs formed from the YAG:Ce phosphor powders post-treated at 1400 and 1500 °C were 47.74 and 76.64 lm/W.  相似文献   

16.
We report the use of YAG:Ce phosphor as the raw material to make thin and transparent phosphor films with pulsed laser deposition including the effects of heating temperature, target–substrate distances, annealing times, and annealing atmosphere on the YAG:Ce3+ phosphor film crystal types and spectral properties. The results indicated that at a coating temperature of 350°C, the YAG:Ce3+ phosphor film had the best crystallinity with an intact film and maximum fluorescence emission. The crystallinity and fluorescence emission intensity of the film gradually decreased as a function of increasing target–substrate distances. As the annealing time increased, the crystallinity and the fluorescence emission intensity of the film first increased and then decreased. The film made with 5 h of annealing had the best crystallinity and the highest fluorescence emission intensity. The crystallinity of the film annealed under air was higher than that made under nitrogen; the fluorescence intensity of the film under air was slightly lower than the film under nitrogen. The emission peak of the prepared film was at 523 nm when excited at 450 nm. This is slightly blue‐shifted versus the emission of commercial phosphor powders. This study offers a theoretical basis for the development of transparent phosphor films.  相似文献   

17.
A simple, one-step, and fast method based on exothermic reactions is described for synthesis of Tb3Al5O12:Ce phosphor. Light-emitting diodes (LEDs) were fabricated by depositing this phosphor on a blue chip. Photoluminescence and LED emission are compared with respective results for well-known YAG:Ce phosphor. A significant improvement in color rendering index (CRI) attributed to the red shift of Ce3+ emission was observed. Persistent emission is also reported for the first time in the Tb3Al5O12:Ce annealed in reducing atmosphere. It well correlates with Ce3+ emission and a peak around 80°C in the thermoluminescence glow. The long-lasting emission was associated with host-related electron traps.  相似文献   

18.
In the present work, a novel method for the synthesis of monodispersed cubic shape Ce-doped yttrium aluminum garnet (YAG:Ce) nanophosphors is reported. Single phase Ce doped YAG nanoparticles are prepared by solvothermal processing, followed by annealing treatment. Morphological investigation by scanning electron microscopy (SEM) showed the formation of monodispersed 500 nm cubic shape Ce-doped YAG phosphor. The crystalline Ce-doped YAG showed broad emission peaks in the range of 480-640 nm with maximum intensity at 524 nm. The emission intensity increased with increase in calcination temperatures while reduced with increase in Ce3+ ions concentration. Detailed study was carried out to understand the formation of monodispersed cubic shape Ce doped YAG nanoparticles. It was found that the solvent, surfactant and impurity (counter ions of cerium and aluminum salt) has significant effect on the crystal growth.  相似文献   

19.
In order to meet the increasing demand for high-power laser diode lighting and displays, phosphor converters with high-brightness and high-directionality ought to be constructed to enhance the luminance and luminous efficacy. However, the pores formed during the sintering of phosphor ceramics affect the scattering effect and directionality of light. Therefore, porosity optimization and pore size regulation need to be explored. In this work, a series of Ce:YAG ceramics with various porosities and pore sizes were prepared. The influences of porosity and pore size on the microstructure, light confinement ability, and optical properties of Ce:YAG ceramics were studied. The ceramic phosphor with a porosity of 10 vol.% and a pore size of 3 μm exhibits a good spot confinement ability and shows a high luminous flux value of 3430 lm and a central luminance (1669 592 cd/m2) under blue laser excitation. The 10 vol.% Ce:YAG ceramic phosphor with a pore size of 5 μm has the highest emission intensity and gives a maximum luminous efficacy of 268 lm/W and a luminous flux of 4020 lm under 30 W/mm2 blue laser excitation. Thus, the porous Ce:YAG ceramics are expected to be a promising candidate for high-brightness laser lighting and projection applications.  相似文献   

20.
(Ce,Gd):YAG-Al2O3 composite ceramics were prepared for high-brightness yellow LED (565?590 nm) applications. Phase fraction, microstructure, thermal quenching effect, and luminescent properties of composite ceramics with varying compositions were studied in detail. Collaborating composite ceramics with InGaN blue chips, the relationship between thermal conductivity, temperature rise during LED-driven phosphor conversion, and steady-state luminous efficiency were elucidated. As the proportion of Al2O3 increases from 0 to 40 wt%, the steady-state luminous efficiency of yellow LED is enhanced from 100.88–109.49 lm W?1, benefiting from the increased thermal stability and reduced operating temperature of ceramics (from 141.1–132.2 °C). Additionally, scattering behavior and extraction efficiency of composite ceramics with different thicknesses were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号