首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
《Advanced Powder Technology》2021,32(12):4522-4532
Construction of heterojunction with reusability is one of the effective ways to avoid secondary pollution and strengthen photocatalysis. Herein, a magnetically recyclable Z-scheme Bi4O5I2/NiFe2O4 heterojunction photocatalyst was successfully fabricated by a two-step hydrothermal method. Through adjusting the theoretical molar proportion of NiFe2O4 to Bi4O5I2, it was verified that the optimal composite could decompose 98.5% Rhodamine B (RhB, 10 mg/L) within 60 min under simulative sunlight and 98.1% RhB within 80 min under visible light. According to the characterizations, the superior performance was mainly associated with the small band gap energy (2.44 eV) and efficient separation of photo-generated electrons and holes caused by the formation of heterojunction. Meanwhile, the enlarged specific area (27.6 m2/g) provided many adsorptive sites and active sites to improve the reaction further. Moreover, the trapping experiment indicated that the photodegradation involved O2, OH and h+. After confirming the reliable activity, reusability and stability of the photocatalyst, an inferred mechanism was shown. In summary, the design of this magnetically recyclable Z-scheme Bi4O5I2/NiFe2O4 heterojunction photocatalyst can become a new choice to purify wastewater.  相似文献   

2.
为制备符合铁电存储器件要求的高质量铁电薄膜,采用溶胶-凝胶(Sol-Gel)工艺,制备了Si基Bi4Ti3O12铁电薄膜及MFS结构的Ag/Bi4Ti3O12/P-Si异质结,对Bi4Ti3O12薄膜的相结构特征及异质结的C-V特性进行了测试与分析.XRD图谱显示,Si基Bi4Ti3O12薄膜具有沿c-轴择优取向生长的趋势,而Ag/Bi4Ti3O12/p-Si异质结顺时针回滞的C-V特性曲线则表明,该异质结可实现电极化存储.此外,对该异质结C-V特性曲线的非对称及向负偏压方向偏移的产生原因也进行了分析.在此基础上,为提高铁电薄膜的铁电性能及改善其C-V特性提出了合理的结构设想.  相似文献   

3.
采用sol-gel工艺制备了Pt/SrBi2Ta2O9/Bi4Ti3O12/p-Si异质结. 研究了退火温度对异质结微观结构与生长行为、漏电流密度和C-V特性等的影响. 研究表明: 成膜温度较低时,SrBi2Ta2O9、Bi4Ti3O12均为多晶薄膜, 但随退火温度升高, Bi4Ti3O12薄膜沿c轴择优生长的趋势增强; 经不同退火温度处理的Pt/SrBi2Ta2O9/Bi4Ti3O12/p-Si异质结的C-V曲线均呈现顺时针非对称回滞特性, 且回滞窗口随退火温度升高而增大, 经700℃退火处理后异质结的最大回滞窗口达0.78V; 在550~700℃范围内, Pt/SrBi2Ta2O9/Bi4Ti3O12/\\p-Si异质结的漏电流密度先是随退火温度升高缓慢下降, 当退火温度超过650℃后漏电流密度明显增大, 经650℃退火处理的异质结的漏电流密度可达2.54×10-7A/cm2的最低值.  相似文献   

4.
用共沉淀法制备的Fe3O4纳米粒子作为种子,通过水热法获得了微米尺寸的Fe3O4/Bi2O3复合粒子。X射线衍射和X光电子能谱表征结果说明复合粒子是由Fe3O4和Bi2O3组成。扫描电子显微镜照片表明复合粒子形貌基本呈规则球形,并且具有花瓣状的三维多级结构。以罗丹明B的催化降解实验为模型考察了不同反应组成、不同反应介质、不同反应温度条件下制备的复合粒子的催化活性。结果表明,当反应条件中m(Bi(NO3)3·5H2O)/m(Fe3O4)为1.9 g∶0.2 g,水作反应介质在160℃时,所制备的复合粒子催化活性最高,对罗丹明B的降解率达95.4%。降解完成后,用磁铁吸附,Fe3O4/Bi2O3很快从体系中分离,可以重新催化降解罗丹明B,实现磁场控制的循环催化。实验发现,Fe3O4/Bi2O3经6次循环利用后,对罗丹明B的降解率仍达88.5%。  相似文献   

5.
The ZnFe2O4/PANI/Ag2CO3 photocatalyst was synthesized by the co-precipitation method. The composition, morphology and optical properties of the synthesized photocatalyst were characterized. Compared with pure Ag2CO3, ZnFe2O4, PANI/Ag2CO3 and ZnFe2O4/Ag2CO3, ZnFe2O4/PANI/Ag2CO3 has the best photocatalytic ability of bisphenol A can reach 86.36% under 40 min of light, and it has a certain ability to be reused. At the same time, after 1 h of light, the degradation rate of Nitrobenzene can reach 90%. The reason for the increased catalytic ability of ZnFe2O4/PANI/Ag2CO3 can be attributed to the extended absorption capacity of the visible light region and the efficient separation of electron-hole pairs.  相似文献   

6.
采用快速退火工艺在Pt/Ti/SiO2/p-Si衬底上制备了Bi4Ti3O12铁电薄膜.研究了退火温度对薄膜微观结构、铁电特性及介电性能的影响.研究表明:退火温度对Si基Bi4Ti3O12铁电薄膜晶相结构的影响显著,对晶粒尺寸和表面形貌的影响较小,但退火温度超过800℃后会出现焦绿石等杂相;低于750℃时,薄膜的剩余极化随退火温度升高而增大,高于750℃时却有所减小,但矫顽电场随退火温度升高而逐渐降低;退火温度对薄膜的漏电流密度有一定的影响,薄膜的漏电流密度在200kV/cm极化电场作用下低于3×10-9A/cm2,750℃时的剩余极化和矫顽电场分别为11μC/cm2和77kV/cm,具有较好的铁电和介电性能.  相似文献   

7.
Journal of Materials Science: Materials in Electronics - Zn-doped and undoped BCTO ceramics (Bi2/3Cu3?xZnxTi4O12, where x?=?0, 0.05, 0.1, and 0.2) were prepared by semi-wet...  相似文献   

8.
In this study the constructional modification of Graphitic carbon nitride nanosheet (GCN-ns) has been made with the aid of ZnCr layered double hydroxide (ZC-LDH) in a unique 2D-2D structure to enhance its visible light absorption. Optical and morphological study presents successful incorporation of ZC-LDH on the surface of GCN-ns. Through adjusting of GCN-ns by ZC-LDH lower recombination rate of e?/h+ pairs, longer lifetimes and an increase in contamination reduction was brought out. The binary nanocomposite was employed to effectively degrade Rhodamine B under UV/vis light irradiation. The improvement in photocatalytic abilities was proven to be related to in situ self-production of H2O2 on GCN-ns/ZC-LDH surface by Xe light irradiation which in return accounts for additional hydroxide radical generation. Radical quenching experiments specified the main active species involved while the consequent step-scheme (S-scheme) charge transfer mechanism was proposed.  相似文献   

9.
Novel Ag2O-BaFe12O19/C3N4 composites were prepared via a grind, solvothermal and deposition–precipitation methods. The physicochemical properties of the samples were tested by FT-IR, XRD, SEM, TEM, XPS, DRS, ESR, VSM, photocurrent test, and electrochemical impedance spectra test, respectively. The characterization manifested that Ag2O was firmly anchored to the BaFe12O19/C3N4 to form heterogeneous hybrid. Most importantly, the formation of Ag2O-BaFe12O19/C3N4 effectively promoted the charge transfer, eventually enhancing the photocatalytic performance. Meanwhile, the activity of the photocatalysts were assessed by photocatalytic removal of tetracycline (TC) under visible light irradiation. The results showed that Ag2O-BaFe12O19/C3N4 photocatalyst has better photocatalytic activities than the pure component. The degradation rate reaches 80 % after 15 min, which is nearly 1.56 times higher than that of pure g-C3N4. The effects of Ag2O content, photocatalyst dosage, pH value on TC degradation performances were studied in detail, respectively. The experimental results verified that pH value exhibited significant effects on TC degradation. The TC degradation rate was highest only when the initial solution pH = 7. This indicates that the photocatalyst also has high activity in neutral environment, and no additional pH adjustment is required. The results of plant growth test (mung bean seeds) showed that the degradation intermediates showed lower toxicity. Based on experiments and characterization, the possible carrier migration and photocatalytic degradation mechanism were proposed.  相似文献   

10.
Heterostructured Fe3O4/Bi2O2CO3 photocatalyst was synthesized by a two-step method. First, Fe3O4 nanoparticles with the size of ca. 10 nm were synthesized by chemical method at room temperature and then heterostructured Fe3O4/Bi2O2CO3 photocatalyst was synthesized by hydrothermal method at 180 °C for 24 h with the addition of 10 wt% Fe3O4 nanoparticles into the precursor suspension of Bi2O2CO3. The pH value of synthesis suspension was adjusted to 4 and 6 with the addition of 2 M NaOH aqueous solution. By controlling the pH of synthesis suspension at 4 and 6, sphere- and flower-like Fe3O4/Bi2O2CO3 photocatalysts were obtained, respectively. Both photocatalysts demonstrate superparamagnetic behavior at room temperature. The UV–vis diffuse reflectance spectra of the photocatalysts confirm that all the heterostructured photocatalysts are responsive to visible light. The photocatalytic activity of the heterostructured photocatalysts was evaluated for the degradation of methylene blue (MB) and methyl orange (MO) in aqueous solution over the photocatalysts under visible light irradiation. The heterostructured photocatalysts prepared in this study exhibit highly efficient visible-light-driven photocatalytic activity for the degradation of MB and MO, and they can be easily recovered by applying an external magnetic field.  相似文献   

11.
The organo-templated iron(III) borophosphate (C4H12N2)3FeIII6(H2O)4[B6P12O50(OH)2]·2H2O was prepared under mild hydrothermal conditions (443 K). The crystal structure was determined from single-crystal X-ray data at 295 K (orthorhombic, Pbca (No. 61), Z=4, a=17.8023(7) Å, b=16.1037(5) Å, c=19.1232(6) Å, V=5482.3(3) Å3, R1=0.055, wR2=0.104, 6576 observed reflections with I>2σ(I)) and contains a new type of borophosphate anion: a mixed open- and loop-branched zehner single chain, , built from heptamers [B2P5O21] interconnected by BO3(OH) tetrahedra sharing their third oxygen corners with additional (terminal) PO4 tetrahedra to form open branchings. The mixed open- and loop-branched single chains running along [0 0 1] are interconnected by three crystallographically independent iron coordination octahedra to form a 3D framework structure containing eight-membered ring channels running along [0 1 0] and cages, which are occupied by two crystallographically independent piperazine cations and H2O molecules. The displacement parameters of C and N atoms in the piperazine cations are dramatically influenced by the strength of the hydrogen bond reflecting the shape of the cavities. The magnetic investigations indicate the existence of antiferromagnetic interactions as the major components. A narrow hysteresis at low temperatures indicates a weak ferromagnetic component, due to a non-cancellation of spins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号