首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we have prepared a novel (K0.5Na0.5)0.99-xPrxYb0.01NbO3 (abbreviated as KNN:xPr3+/0.01Yb3+, x = 0.0006, 0.0008, 0.001, 0.002, 0.003, and 0.004) ceramics, which possess visible UC emissions, photochromic (PC) and optical thermometric properties. Under the excitation of a 980-nm diode laser, all the samples show the featured emissions of Pr3+ ions and the UC emission intensity is greatly dependent on the Pr3+ doping content. The optimal UC luminescence intensity is obtained at x = 0.001. All the prepared samples show a strong PC reaction, and a large luminescence quenching degree (ΔRt) of 74.94% is found. The optical thermometric properties of both the irradiated and unirradiated KNN:0.001Pr3+/0.01Yb3+ ceramics in the temperature range of 123-573 K have been investigated via measuring the temperature-dependent UC emission spectra of green emissions, which originate from the two 3P1 and 3P0 thermally coupled levels. It has been found that the prepared samples have both excellent PC behaviors and temperature-sensing performances. These results suggest that the KNN:xPr3+/0.01Yb3+ ceramics are promising candidates for the applications in PC reaction and thermometers.  相似文献   

2.
A large and reversible upconversion (UC) luminescence modulation has been found in the Na0.498Bi0.498TiO3:0.002Er (NBT:0.002Er) based on the photochromic reaction. The dependence of luminescence modulation of the ceramics on the wavelength of irradiation light and sintering temperature was investigated. It was found that the optimized sintering temperature and irradiation wavelength were 1130°C and 405 nm, respectively. The highest ΔRt (defined as: ΔRt = (R0 – Rt)/R0×100(%), where R0 and Rt are the initial emission intensity and that after different irradiation time, respectively) value of 44.9% was obtained for the ceramics sintered at 1130°C after irradiation at 405 nm. More importantly, for the poled ceramics, ΔRt value was promoted to a high value of 75.5%, which was 168% of that of the unpoled ones. The mechanism of luminescence modulation and its enhancement via electric field poling were discussed. This study demonstrated that electric field poling was an effective strategy to enhance the PC reaction in the NBT ceramics.  相似文献   

3.
Er/Pr‐doped K0.5Na0.5NbO3 ceramics have been fabricated and the effects of Pr3+ on their photoluminescence properties have been investigated systematically. The visible upconversion emissions, near‐infrared and mid‐infrared downconversion emissions of Er3+ ions under the excitation of 980 nm have been studied in detail. The effects of Pr3+ on PL properties and energy‐transfer processes have also been elucidated. By selecting an appropriate excitation source, simultaneous visible downconversion emissions of Er3+ and Pr3+ ions can be realized, and the emission colors of the ceramics can be tuned via the concentration of Pr3+ ions in a wide range from yellowish green to yellow. Our results also reveal that the photoluminescence emissions of the ceramics can be enhanced by the alignment of polarization of the ferroelectric host.  相似文献   

4.
Er3+ doped K0.5Na0.5NbO3 (KNN) lead-free piezoelectric ceramics were synthesized by the solid-state reaction method. The upconversion emission properties of Er3+ doped KNN ceramics were investigated as a function of Er3+ concentration and incident pumping power intensity. Bright green (~555 nm) and red (670 nm) upconversion emission bands were obtained under 980 nm excitation at room temperature, which are attributed to (2H11/2, 4S3/2)→4I15/2 and 4F9/24I15/2 transitions, respectively. The upconversion emission intensity can be adjusted by changing Er3+ concentration, and the mechanism of upconversion processes involve not only a two-photon absorption but also a three-photon absorption. In addition to the admirable intrinsic piezoelectric properties of KNN, this kind of material may have potential application as a multifunctional device by integrating its upconversion and piezoelectric property.  相似文献   

5.
It is highly significant to develop multifunctional optical materials to meet the huge demand of modern optics. Usually, it is difficult to realize multiple optical properties in one single material. In this study, we choose ferroelectric (KxNa1-x)NbO3:Pr3+ (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) as hosts, and the rare earth ions Pr3+ are doped in them. For the first time, the integration of photoluminescence, photochromism, luminescence modulation and thermoluminescence and has been achieved in the Pr3+ doped (KxNa1-x)NbO3:Pr3+ ferroelectric ceramics. Upon 337- or 448-nm light irradiation, all samples show strong red emissions centered at 610 nm. The photochromic reaction increases with the increasing K+ content in the (KxNa1-x)NbO3:Pr3+ ceramics. A strong photochromic reaction has been found in the (K0.5Na0.5)NbO3:Pr3+ ceramics. Accordingly, a large and reversible photoluminescence modulation (ΔRt = 50.71%) is achieved via altering 395-nm-light irradiation and 200 °C thermal stimulus. All the prepared ceramics show a visible thermoluminescence when stimulated at 200 °C. The mechanisms of luminescence modulation and thermoluminescence are discussed. Present study could provide a feasible paradigm to realize multiple optical properties in one single material.  相似文献   

6.
A significant luminescence modulation behavior based on photochromic reactions was observed in Ho3+‐doped (Na0.52K0.48)0.92Li0.08NbO3 ceramics, fabricated by the conventional solid‐state reaction method. Under visible light irradiation (407 nm) for 20 second, the samples changed pale gray from initial pale green, and returned to their original color by a thermal stimulus of 230°C for 10 minutes, showing typical photochromic phenomenon. Under 453 nm excitation, the samples exhibited strong green emission at 551 nm. Interestingly, their green emission intensity can be effectively tailored by controlling photochromic reaction processes (irradiation wavelength and time), and the luminescent modulation ratio (ΔRt) reaches up to 77%. And, the ΔRt value has no any obvious degradation after 10 cycles by alternating visible light irradiation and thermal stimulus, showing excellent reversibility. These results make it potential applications in many fields as a kind of multifunctional material.  相似文献   

7.
《Ceramics International》2022,48(9):12578-12584
Rare earth ions doped luminescent materials have drawn considerable attention as they can generate both upconversion and downshifting emissions. Here, the rare earth ions Pr3+/Er3+ codoped perovskite oxide Bi4Ti3O12 is proposed as a dual-mode temperature sensor and anti-counterfeiting material based on its up/down-conversion luminescence. Under 481 nm excitation, the intensity ratio of green emission (~523 nm in Er3+) and red emission (~611 nm in Pr3+) brings about a very high absolute sensitivity (Sa) of 2% K?1 at 568 K and a maximum relative sensitivity (Sr) of 1.03% K?1 at 478 K in the temperature range of 298–568 K. In addition, the upconversion green emissions of Er3+ yield a relatively-high Sr of 1.1% K?1 at 298 K with 980 nm excitation, which can provide self-calibration coupled with down-conversion luminescence temperature sensing mode. Besides, this phosphor also shows tunable luminous colors for the potential application in the anti-counterfeiting field under various excitation wavelengths.  相似文献   

8.
Up-conversion luminescent (UCL) materials are excellent candidate for optical anti-counterfeiting and the exploitation of multi-wavelength NIR light triggered UC phosphors with tunable color emission is essential for reliable anti-counterfeiting technology. Herein, a series of lanthanide ions (Er3+, Er3+–Ho3+, and Yb3+–Tm3+) doped BaTiO3 submicrometer particles are synthesized through a modified hydrothermal procedure. XRD and SEM measurements were carried out to identify the structure and morphology of the samples and their UCL properties under 808, 980, and 1550 nm NIR excitation are investigated. Er3+ singly doped sample exhibits Er3+ concentration-dependent and excitation wavelength-dependent emission color from green to yellow and orange. The corresponding UC mechanisms under three NIR light excitation are clarified. Pure red emission under 1550-nm excitation was obtained by introducing small amount of Ho3+ and the fluorescent lifetime test was used to confirm the energy transfer from Er3+ to Ho3+. In addition, Yb3+–Tm3+ co-doped sample shows intense blue emission from 1G4 → 3H6 transition of Tm3+ under 980-nm excitation. As a proof of concept, the designed pattern using phosphors with red, green, and blue three primary color emissions under 1550, 808, and 980 nm NIR excitation was displayed to demonstrate their anti-counterfeiting application.  相似文献   

9.
Efficient optical modulation enables a significant improvement of optical conversion efficiency and regulation of optical response rate, showing great potential for optoelectronics applications. However, the weak interaction between photons poses a strong obstacle for manipulating photon–photon interactivity. Here, upon simultaneous excitation of 850 and 1550 nm, a fast–slow optical modulation of green up-conversion (UC) luminescence in oxyfluoride glass ceramics containing NaYF4:Er3+ nanocrystals can be achieved. Compared with the sum of luminescence intensity excited by the two single-wavelengths, green UC luminescence excited by simultaneous two-wavelength presents an obvious increase by approximate six times. Interestingly, the response rate of green UC luminescence relies on the pump strategy of two-wavelength excitation, showing as high as two times of the fast–slow response difference. The fast–slow optical modulation of green UC luminescence under two-wavelength excitation is promising for emerging applications in all-optical switching.  相似文献   

10.
Sm3+ doped KSr2Nb5O15 (KSN-Sm) textured ceramics with anisotropic photochromic and luminescence modulation behaviors provided a new strategy for the enhancement of anti-counterfeiting ability. The KSN-Sm textured ceramics were fabricated by the tape casting technology, which exhibited obvious grain-orientation, with Lotgering factor f(00l) of 0.62. The textured sample possessed evident difference of reflectivity, photochromic, luminescent and luminescence modulation properties among various grain-orientated directions. The difference of luminescent emission intensity was over than 30 % and the luminescence modulation ratios △Rt are 75.3 % and 63.3 % along paralleled and vertical [00l] orientations, respectively. These optical anisotropies were attributed to the different refractive indexes, distributions of photochromic centers and energy transfer rates at various orientations. This work is hopeful to achieve the multidirectional data recording and enhancement of anti-counterfeiting ability of photochromic ceramics by the anisotropic properties of textured ceramics.  相似文献   

11.
《Ceramics International》2016,42(8):9899-9905
Pr3+/Er3+-doped 0.93Bi0.5Na0.5TiO3–0.07BaTiO3 ceramics have been fabricated at a low sintering temperature of 960°C using a sintering aid of Li2CO3. The effects of energy transfer between Pr3+and Er3+on their photoluminescence properties have been investigated. Our results reveal that the down-conversion emissions of Pr3+are weakened and the lifetimes are shortened by the co-doping of Er3+. As a result, when both Pr3+and Er3+are excited simultaneously, with increasing the concentration of Er3+, the green emissions from Er3+increase but the red emissions from Pr3+decrease. Moreover, the emission color of the ceramics can be reversibly changed between red, yellow and yellowish green by using excitation sources of different wavelengths. Strong up-conversion green emissions with short lifetimes arisen from Er3+have also been observed for the ceramics under the excitation of 980 nm. Owing to the Li2CO3 sintering aid, the low-temperature sintered ceramics also exhibit reasonably good ferroelectric and piezoelectric properties, and hence should be promising for multifunctional applications such as electro-optical coupling devices.  相似文献   

12.
Fluorescent materials have been widely used for anti-counterfeiting of important documents and currencies, wherein their anti-counterfeit abilities could be improved through multi-mode excitation. Herein, dual-mode-excited double-colour-emitting Er3+doped SrBi4Ti4O15 up-conversion (UC) phosphors (SBTO: Er3+) were synthesised, and their UC spectra included green (2H11/2/4S3/2 → 4I15/2) and red (4F9/2 → 4I15/2) emissions from Er3+ ions under 980 or 1550 nm excitation. However, the green emission colour of phosphors was independent of dopant concentration under 980 nm laser irradiation; whereas the final emission colour was dominated by red emission and significantly affected by contents of Er3+ under 1550 nm excitation. These observations demonstrated potential application in dual-mode double-colour anti-counterfeiting. The possible UC mechanisms and emission characteristics of the phosphors using different 980 and 1550 nm irradiation source were contrastively investigated, and some fluorescent security patterns were also designed to demonstrate the potential applications in anti-counterfeiting and concealing important information.  相似文献   

13.
The doping of transition metal ions in the up-conversion (UC) luminescent material doped with Yb3+/Ln3+ is a facile way to increase their UC luminescence intensities and alter their colors. In this study, La2MgTiO6:Yb3+/Mn4+/Ln3+ (Ln3+ = Er3+, Ho3+, and Tm3+) phosphors showing excellent luminescence properties were prepared by a solid-state method. The sensitivity of the La2MgTiO6:Yb3+/Ln3+/Mn4+ phosphor was double that without Mn4+, because Mn4+ affects the UC emissions of Ln3+ via energy transfer between these ions. Moreover, Mn4+ also acts as a down-conversion activator, which can combine with UC ions to achieve multi-mode luminescence at different wavelengths. Under 980 nm excitation, these samples emit green light (from Er3+ and Ho3+) and blue light (from Tm3+). In contrast, under 365 nm excitation, they emit red light (from Mn4+). Further testing revealed that the La2MgTiO6:Yb3+/Mn4+/Ln3+ phosphors have potential applications in temperature sensing and anti-counterfeiting.  相似文献   

14.
Upconversion (UC) luminescence modulation is quite important in controlling and processing light for active components of light sources, photoswitches, optical memories, and optical sensing devices. In this work, we reported one kind of novel phosphor, Ho3+/Yb3+-doped SrBi4Ti4O15 ceramics, which displayed both strong UC luminescence and obvious photochromic (PC) reaction. The UC luminescence, PC effect, and the modulation of UC performance based on PC behavior were investigated in detail. By alternating visible light irradiation and thermal stimulus, the UC luminescence could be reversibly regulated. Meanwhile, the modulation was unveiled to tightly rely on the irradiation time and thermal treatment processes. Excellent reproducibility was also achieved. In addition, as an alternative method to thermal treatment, the manipulation of luminescence by electric field was also explored. Finally, the mechanism related to the UC luminescence manipulation was illustrated. The results indicate that these samples could be potentially utilized in optical data storage and anti-counterfeiting security fields.  相似文献   

15.
Here, Bi3+, Er3+ co-activated gadolinium phosphors with multimode emission properties are prepared, which can emits blue, green, and orange light under the excitation of ultraviolet, 980 and 1550 nm, respectively. Moreover, BaGd2O4:Bi3+, Er3+ can show multicolor luminescence under different excitation conditions, such as pump light source, ambient temperature, working current, and other factors. Based on the dynamic luminescence characteristics, the dynamic anti-counterfeiting experiments are designed based on the phosphor. At the same time, the material also shows multimode temperature sensing characteristics. Under the excitation of 980 nm laser, three strong up-conversion signals Er3+ ions are generated at 528 nm (2H11/2), 555 nm (4S3/2), and 668 nm (4F9/2), which have different temperature dependences. Based on the fluorescence intensity ratio between thermal-coupled energy levels (2H11/2/4S3/2) and nonthermal-coupled energy levels (2H11/2/4F9/2) of Er3+ ions, respectively, the dual-mode temperature thermometer was constructed with high-temperature sensitivity. In addition, the fluorescence lifetime of Bi3+ ions also has a strong temperature dependence, which can be used as another temperature detection signal, greatly improving the stability of thermometers under harsh conditions. Therefore, the material has a bright prospect in the field of anti-counterfeiting and temperature sensing.  相似文献   

16.
Ho3+/Yb3+ co-doped NaGdTiO4 phosphors were synthesized by a solid-state reaction method. The upconversion (UC) luminescence characteristics excited by 980 nm laser diode were systematically investigated. Bright green UC emission centered at 551 nm accompanied with weak red and near infrared (NIR) UC emissions centered at 652 and 761 nm were observed. The dependence of UC emission intensity on excitation power density showed that all of green, red and NIR UC emissions are involved in two-photon process. The UC emission mechanisms were discussed in detail. Concentration dependence studies indicated that Ho3+ and Yb3+ concentrations had significant influences on UC luminescence intensity and the intensity ratio of the red UC emission to that of the green one. Rate equations were established based on the possible UC mechanisms and a theoretical formula was proposed to describe the concentration dependent UC emission. The UC luminescence properties of the presented material was evaluated by comparing with commercial NaYF4:Er3+, Yb3+ phosphor, and our sample showed a high luminescence efficiency and good color performance, implying potential applications in a variety of fields.  相似文献   

17.
In this paper, we report upconversion (UC) luminescence enhancement in LaBGeO5:Yb3+, Er3+ glass‐ceramics (GCs), surface crystallized glass‐ceramics (SCGCs) and ceramics compared with the as‐melt glass fabricated by the conventional melt‐quenching technique. Based on structural investigations, we find that the nucleation and crystallization of trigonal stillwellite LaBGeO5:Yb3+, Er3+ nanocrystals occur first at the glass surface before the following volume crystallization. The local site symmetry around rare earth (RE) ions which was evaluated using the Eu3+ ions as a probe together with Judd‐Ofelt theory calculations exhibits a clear increase with the devitrification of the glass. Consequently, complete crystallization of the glass leads to largest enhancement in the UC emissions of the LaBGeO5:Yb3+, Er3+ ceramics. We ascribe the enhancement of UC luminescence in the LaBGeO5:Yb3+, Er3+ GCs, SCGCs, and ceramics to the structural ordering and the improvement of site symmetry surrounding RE ions that minimizes the rate of nonradiative relaxation process.  相似文献   

18.
《Ceramics International》2020,46(8):11962-11969
The structure and optical properties of Srn+1SnnO3n+1 ceramics greatly depend on the n value. Thus, we fabricated four compositions, namely Srn+1SnnO3n+1:Eu3+ (n = 1, 2, 5, ∞) ceramics, and their crystal structure, photoluminescence, photochromism and luminesce modulation properties have been investigated. It is found that excellent photochromism and luminesce modulation properties are found in Sr2SnO4:Eu3+ and Sr3Sn2O7:Eu3+ ceramics. After 280-nm light irradiation, the Sr2SnO4:Eu3+ ceramics transform into gray purple from primal white. Meanwhile, luminescence intensity decrement ratio ΔIdec of the colored Sr2SnO4:Eu3+ reaches a high value of 80.8% under optimized irradiation wavelength. The decreased luminescence intensity of Eu3+ can be completely recovered via 450-nm light irradiation. The ΔIdec of Sr3Sn2O7:Eu3+ ceramic reaches 53.1%, and the decreased luminesce intensity can not be covered by light irradiation, only can be covered by a high temperature stimulus at 400 °C. Finally, we successfully fabricated a flexible membrane using Sr2SnO4:Eu3+ and PDMS for anti-counterfeiting applications.  相似文献   

19.
The near‐infrared luminescence properties of Pr3+/Yb3+:PLZT ferroelectric ceramics have been examined for the first time. Independently, upon either 450 nm (Pr3+) or 980 nm (Yb3+) excitation, luminescence centered at 1340 nm was observed, which corresponds to the 1G43H5 transition of Pr3+. Several spectroscopic parameters for the 1G43H5 transition of Pr3+ ions were determined. The average product of emission cross section and radiative lifetime were relatively large for all x/65/35 PLZT samples (x=6‐10) studied, with values close to 105±2 (×10?26 cm2·s). These spectroscopic investigations indicate that Pr3+/Yb3+:PLZT ferroelectric ceramics are promising candidate for efficient sources emitting near‐infrared radiation at 1340 nm.  相似文献   

20.
《Ceramics International》2017,43(16):13505-13515
ZnO-TiO2 composites co-doped with Er3+ and Yb3+ ions were successfully synthesized by powder-solution mixing method and their upconversion (UC) luminescence was evaluated. The effect of firing temperature, ZnO/TiO2 mixing ratio, and dopant concentration ranges on structural and UC luminescence properties was investigated. The crystal structure of the product was studied and calculated in detail by means of X-ray diffraction (XRD). Also, the site preference of Er3+ and Yb3+ ions in the host material was considered and analyzed based on XRD results and UC luminescence characteristics. Brightest UC luminescence was observed in the ZnO-TiO2:Er3+,Yb3+ phosphor fired at 1300 °C in which the system consisted of mixed phases; Zn2TiO4, TiO2, RE2Ti2O7 and RE2TiO5 (RE = Er3+ and/or Yb3+). Under the excitation of a 980 nm laser, the two emission bands were detected in the UC emission spectrum, weak green band centered at 544 and 559 nm, and strong red band centered at 657 and 675 nm wavelengths in accordance with 2H11/2, 4S3/24I15/2 and 4F9/24I15/2 transitions of Er3+ ion, respectively. The simple chemical formula equations, for explaining the site preference of Er3+ and Yb3+ ions in host crystal matrix, were generated by considering the Zn2TiO4 crystal structure, its crystal properties, and the effect of Er3+ and Yb3+ ions to the host crystal matrix. The UC emission intensity of the products was changed by varying ZnO/TiO2 mixing ratios, and Er3+ and Yb3+ concentrations. The best suitable condition for emitting the brightest UC emission was 1ZnO:1TiO2 doped with 3 mol% Er3+, 9 mol% Yb3+ fired at 1300 °C for 1 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号