首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Open porosity cellular SiC-based ceramics have a great potential for energy conversion, e.g. as solar receivers. In spite of their tolerance to damage, structural applications at high temperature remain limited due to high production costs or inappropriate properties. The objective of this work was to investigate an original route for the manufacturing of porous SiC ceramics based on 3D printing and chemical vapor infiltration/deposition (CVI/CVD). After binder jetting 3D-printing, the green α-SiC porous structures were reinforced by CVI/CVD of SiC using CH3SiCl3/H2. The multiscale structure of the SiC porous specimens was carefully examined as well as the elemental and phase content at the microscale. The oxidation and thermal shock resistance of the porous SiC structures and model specimens were also studied, as well as the thermal and mechanical properties. The pure and dense CVI/CVD-SiC coating considerably improves the mechanical strength, oxidation resistance and thermal diffusivity of the material.  相似文献   

2.
A process combining the pyrolysis of a lignocellulosic structure and reactive gas treatments has been developed to prepare porous TiC-SiC ceramics for solar receivers. The natural micro-porosity of balsa was complemented by a high open macro-porosity by laser cutting a periodical arrangement of parallel channels. The lignocellulosic structure was first pyrolysed into carbon. This reactive carbon material was then converted into TiC by Reactive Chemical Vapor Deposition (RCVD) using TiCl4/H2. After controlling the absence of cracks due to volume changes, the TiC structure was finally infiltrated by the Chemical Vapor Infiltration (CVI) of SiC using CH3SiCl3/H2. The density, porous structure, elemental and phase compositions, oxidation behavior and crushing strength were assessed after pyrolysis, RCVD and CVI. The SiC CVI coating significantly improves the compressive strength, the oxidation resistance and the thermal properties. The SiC layer is no longer fully protective at high temperature but the mechanical properties remain reasonably high.  相似文献   

3.
Three-dimensional carbon fiber reinforced silicon carbide (C/SiC) composites were fabricated by precursor infiltration and pyrolysis (PIP) with polycarbosilane as the matrix precursor, SiC coating prepared by chemical vapor deposition (CVD) and ZrB2-SiC/SiC coating prepared by CVD with slurry painting were applied on C/SiC composites, respectively. The oxidation of three samples at 1500 °C was compared and their microstructures and mechanical properties were investigated. The results show that the C/SiC without coating is distorted quickly. The mass loss of SiC coating coated sample is 4.6% after 2 h oxidation and the sample with ZrB2-SiC/SiC multilayer coating only has 0.4% mass loss even after oxidation. ZrB2-SiC/SiC multilayer coating can provide longtime protection for C/SiC composites. The mode of the fracture behavior of C/SiC composites was also changed. When with coating, the fracture mode of C/SiC composites became brittle. When after oxidation, the fracture mode of C/SiC composites without and with coating also became brittle.  相似文献   

4.
2D C/ZrC–SiC composites were fabricated by chemical vapor infiltration combined with polymer slurry infiltration and pyrolysis. Liquid highly branched polycarbosilane was used as the pre-ceramic precursor. In order to improve the oxidation resistance, three kinds of coating structures were prepared on C/ZrC–SiC composites: pure zirconium carbide coating, SiC–ZrC coating, and ZrB2–SiC coating. Structural evolutions of the as-produced composites after oxidation in CH4 combustion gas atmosphere at about 1800 °C were investigated and compared. Based on a model of the oxidation process, the mixture ZrB2–CVD SiC showed the best oxidation resistance.  相似文献   

5.
The introduction of multiple heterogeneous interfaces in a ceramic is an efficient way to increase its thermal resistance. Novel porous SiC–SiO2–Al2O3–TiO2 (SSAT) ceramics were fabricated to achieve multiple heterogeneous interfaces by sintering equal volumes of SiC, SiO2, Al2O3, and TiO2 compacted powders with polysiloxane as a bonding phase and carbon as a template at 600 °C in air. The porosity could be controlled between 66% and 74% by adjusting the amounts of polysiloxane and the carbon template. The lowest thermal conductivity (0.059 W/(m·K) at 74% porosity) obtained in this study is an order of magnitude lower than those (0.2–1.3 W/(m·K)) of porous monolithic SiC, SiO2, Al2O3, and TiO2 ceramics at an equivalent porosity. The typical specific compressive strength value of the porous SSAT ceramics at 74% porosity was 3.2 MPa cm3/g.  相似文献   

6.
Herein, the influence of oxidation temperature on the oxidation behavior, microstructure and electromagnetic shielding performance of layered porous ceramics has been systematically investigated. Layered SiC/PyC porous ceramics were prepared by using low-pressure chemical vapor infiltration (LPCVI) method. The oxidized SiC/PyC layered porous ceramics exhibited a negligible mass reduction of 11.94 mg·cm?3, which indicates the excellent high-temperature oxidation resistance of porous ceramics. The electromagnetic shielding performance of SiC/PyC porous ceramics did not exhibit any obvious change even after oxidation at high temperature from 900 to 1300 °C for 10 h. The SET of the layered SiC/PyC porous ceramics was 24.1, 20.0, 19.5, 19.0, 19.8 dB after oxidation at 25 °C, 900 °C, 1000 °C, 1100 °C and 1300 °C, which corresponds to a decrease of 17.01%, 19.09%, 21.16% and 17.84%, respectively. The high-temperature oxidation has rendered a more significant influence on the reflection efficiency of the layered SiC/PyC porous ceramics.  相似文献   

7.
3C‐SiC (111) thick films were grown on Si (110) substrate via laser chemical vapor deposition (laser CVD) using hexamethyldisilane (HMDS) as precursor and argon (Ar) as dilution gas. The 3C‐SiC (111) polycrystalline films were prepared at deposition temperature (Tdep) of 1423‐1523 K, whereas the 3C‐SiC (111) epitaxial films were obtained at 1573‐1648 K with the thickness of 5.40 to 9.32 μm. The in‐plane relationship was 3C‐SiC [‐1‐12]//Si [001] and 3C‐SiC [‐110]//Si [‐110]. The deposition rates (Rdep) were 16.2‐28.0 μm/h, which are 2 to 100 times higher than that of 3C‐SiC (111) epi‐grown on Si (111) by conventional CVD. The growth mechanism of 3C‐SiC (111) epitaxial films has also been proposed.  相似文献   

8.
A simple and efficient way to synthesize the SiC/SiO2 nanocables decorated with the laminated porous ceramics by pyrolysis of filter papers impregnated with silicone resins in flowing argon atmosphere has been successfully developed. The phase composition of the laminated porous ceramics was measured by X-ray diffraction. The morphology and microstructure of the samples were analyzed by scanning electron microscopy and transmission electron microscopy. The experimental results show that the nanocables composed of crystalline SiC core coated with a shell of amorphous SiO2 were observed in the interfacial channels and pores of the laminated ceramics. The diameters of SiC cores were 40–80 nm and the thicknesses of SiO2 shells were 4–10 nm. The increase of the pyrolysis temperature caused an increase in the amount of SiC/SiO2 nanocables. Finally, a vapor–liquid–solid (VLS) process was discussed as the growth mechanism of the nanocables.  相似文献   

9.
Porous cordierite/SiC ceramics were fabricated by in situ reaction bonding using α‐SiC, α‐Al2O3, and MgO powders as the starting materials. During sintering, part SiC is oxidized to SiO2 and then the latter reacts with Al2O3 and MgO to form cordierite. As a result, porous cordierite/SiC ceramics were obtained, and the ceramics are strengthened by the residual SiC. Due to the large volume expansion introduced by the oxidation of SiC, the ceramics exhibit small sintering‐induced dimension variations. In addition, a fine‐grained microstructure and good thermal and mechanical properties were obtained for the porous cordierite/SiC ceramics.  相似文献   

10.
《Ceramics International》2022,48(16):22967-22974
A novel single-source precursor was synthesized to prepare HfCxN1-x/SiC multiphase ceramics by using hafnium chloride (HfCl4), diallylamine (DAA) and polycarbosilane (PCS). We conducted an investigation of the synthesis process, polymer-to-ceramic conversion, as well as the microstructure and phase evolution of HfCxN1-x/SiC multiphase ceramics with different levels of SiC content. The results showed that the core-shell particles of HfCxN1-x-carbon were embedded homogeneously in the β-SiC matrix which is beneficial for preventing grain growth and improving oxidation resistance. Based on data from oxidation tests, the ceramics improved the oxidation temperature and remained stable at a high temperature (1500 °C) with oxidation layer formation on the surface. Due to the highly cross-linked structure without oxygen, high ceramic yield, homogeneous composition and excellent oxidation resistance of the pyrolysis product, the as-prepared precursor is a promising material for making high-performance composite ceramics.  相似文献   

11.
Crystalline mullite was deposited by chemical vapor deposition (CVD) onto SiC/SiC composites overlaid with CVD SiC. Specimens were exposed to isothermal oxidation tests in high-pressure air + H2O at 1200°C. Unprotected CVD SiC formed silica scales with a dense amorphous inner layer and a thick, porous, outer layer of cristobalite. Thin coatings (∼2 μm) of dense CVD mullite effectively suppressed the rapid oxidation of CVD SiC. No microstructural evidence of mullite volatility was observed under these temperature, pressure, and low-flow-rate conditions. Results of this preliminary study indicate that dense, crystalline, high-purity CVD mullite is stable and protective in low-velocity, high-pressure, moisture-containing environments.  相似文献   

12.
《Ceramics International》2020,46(4):4351-4357
A porous morph-genetic SiC/C ceramic material was fabricated using biomass-derived C template, Si powder, and Fe(NO3)3·9H2O as the starting materials. The effects of heating temperature, and catalyst/Si mole ratio on the formation of SiC/C ceramic were investigated. In addition, the pore size distribution was obtained through pore size analysis, and the determination of oxidation resistance of SiC/C ceramics and C template was carried out by thermogravimetric analysis. The results show that copious amounts of SiC nanowires, which were distributed on the surfaces and interiors of the C template holes, were formed at 1300 °C with 4 wt% Fe as catalyst. The SiC nanowires significantly affected the oxidation resistance and microporous structures of the prepared materials. Moreover, a possible formation mechanism for the porous SiC/C ceramic was determined.  相似文献   

13.
The Si/B/C/N/H polymer T2(1), [B(C2H4Si(CH3)NH)3]n, was reacted with different amounts of H3Al·NMe3 to produce three organometallic precursors for Si/B/C/N/Al ceramics. These precursors were transformed into ceramic materials by thermolysis at 1400 °C. The ceramic yield varied from 63% for the Al-poor polymer (3.6 wt.% Al) to 71% for the Al-rich precursor (9.2 wt.% Al). The as-thermolysed ceramics contained nano-sized SiC crystals. Heat treatment at 1800 °C led to the formation of a microstructure composed of crystalline SiC, Si3N4, AlN(+SiC) and a BNCx phase. At 2000 °C, nitrogen-containing phases (partly) decomposed in a nitrogen or argon atmosphere. The high temperature stability was not clearly related to the aluminium concentration within the samples. The oxidation behaviour was analysed at 1100, 1300, and 1500 °C. The addition of aluminium significantly improved the oxide scale quality with respect to adhesion, cracking and bubble formation compared to Al-free Si(/B)/C/N ceramics. Scale growth rates on Si/B/C/N/Al ceramics at 1500 °C were comparable with CVD–SiC and CVD–Si3N4, which makes these materials promising candidates for high-temperature applications in oxidizing environments.  相似文献   

14.
Al2O3-Y2O3-SiC composite coatings were prepared on depleted uranium by cathode plasma electrolytic deposition in Al(NO3)3, Y(NO3)3, SiC nanoparticles and anhydrous ethyl alcohol mixture. The resulting coating consisted of an inner barrier layer and an outer porous layer. The SiC nanoparticles were incorporated into the composite coating and decreased the coating porosity by filling the pores. The potentiodynamic polarization test and neutral salt spray test revealed that the corrosion resistance of depleted uranium was enhanced by the composite coating. Moreover, with increasing the content of SiC nanoparticles in the coating, the coating corrosion resistance was improved gradually.  相似文献   

15.
Porous SiC ceramics have been used in high temperature flue gas filtration fields because of their excellent properties such as high strength, high temperature resistance, corrosion resistance, and long service time. This work reports the porous SiOC-bonded SiC ceramics prepared at low temperature. The properties of porous SiC ceramics were first investigated with silicone resin content from 10 to 25 wt%, and then the effects of different pore-forming agent contents on the behaviors of porous SiC ceramics were discussed by adjusting poly (methyl methacrylate) PMMA microbeads from 5 to 20 wt%. The prepared porous SiC ceramics showed apparent porosity from 17.3% to 57.7%, compressive strength from 6 to 216 MPa, and Darcy permeability k1 ranging from 7.02 × 10−14 to 1.45 × 10−12 m2. The corrosion behavior of porous SiC ceramics was investigated in acidic and alkaline media. The porous SiC ceramics showed better corrosion resistance in acidic solutions.  相似文献   

16.
Excellent microwave absorption properties of porous SiC ceramics were successfully synthesized using SiC/camphene slurries with various polycarbosilane (PCS) contents related to the SiC powder. The compositions of the nanowires (NWs) growth in the pore channels of porous SiC ceramics strongly depended on the pyrolysis atmosphere, with N2-generating Si3N4 NWs and Ar SiC NWs. With the increase of PCS content, the minimum reflection coefficient (RC) of porous SiC ceramics decreased from ?7.6 dB to ?67.4 dB in Ar and from ?10.9 dB to ?24.7 dB in N2, respectively. The effective absorption bandwidth (EAB) of porous SiC ceramics could be up to 8.1 GHz in Ar and 4.5 GHz in N2. The enhanced microwave absorption properties of porous SiC ceramics could be attributed to the formation of SiC nano-crystalline, nanosized carbon and the NWs, which would increase the amount of boundaries and defects, leading to the electronic dipole polarization and interfacial scattering.  相似文献   

17.
The process of laser irradiation of a surface of SiC ceramics in air was investigated. As a result of SiC oxidation and evolution of CO2, porous SiO2 forms on the target surface. During deposition of ablation products on the substrate, a loose SiO2 film forms.  相似文献   

18.
In this paper, we first reported that porous SiC–Al2O3 ceramics were prepared from solid waste coal ash, activated carbon, and commercial SiC powder by a carbothermal reduction reaction (CRR) method under Ar atmosphere. The effects of addition amounts of SiC (0, 10, 15, and 20 wt%) on the postsintering properties of as-prepared porous SiC–Al2O3 ceramics, such as phase composition, microstructure, apparent porosity, bulk density, pore size distribution, compressive strength, thermal shock resistance, and thermal diffusivity have been investigated. It was found that the final products are β-SiC and α-Al2O3. Meanwhile, the SEM shows the pores distribute uniformly and the body gradually contacts closely in the porous SiC–Al2O3 ceramics. The properties of as-prepared porous SiC–Al2O3 ceramics were found to be remarkably improved by adding proper amounts of SiC (10, 15, and 20 wt%). However, further increasing the amount of SiC leads to a decrease in thermal shock resistance and mechanical properties. Porous SiC–Al2O3 ceramics doped with 10 wt% SiC and sintered at 1600°C for 5 hours with the median pore diameter of 4.24 μm, room-temperature compressive strength of 21.70 MPa, apparent porosity of 48%, and thermal diffusivity of 0.0194 cm2/s were successfully obtained.  相似文献   

19.
《Ceramics International》2022,48(14):20168-20175
To improve the electromagnetic (EM) wave absorption performance of rare earth silicate in harsh environments, this work synthesized dense SiC–Y2Si2O7 composite ceramics with excellent EM wave absorption properties by using the polymer permeation pyrolysis (PIP) process, which introduced carbon and SiC into a porous Y2Si2O7 matrix to form novel composite ceramics. SiC–Y2Si2O7 composite ceramics with different numbers of PIP cycles were tested and analysed. The results show that the as-prepared composites exhibit different microstructures, porosities, dielectric properties and EM wave absorption properties. On the whole, the SiC–Y2Si2O7 composite ceramics (with a SiC/C content of 29.88 wt%) show superior microwave absorption properties. The minimum reflection loss (RLmin) reaches ?16.1 dB when the thickness is 3.9 mm at 9.8 GHz. Moreover, the effective absorption bandwidth (EAB) included a broad frequency from 8.2 GHz to 12.4 GHz as the absorbent thickness varied from 3.15 mm to 4.6 mm. In addition, the EM wave absorption mechanism was analysed profoundly, which ascribed to the multiple mediums of nanocrystalline, amorphous phases and turbostratic carbon distributed in the Y2Si2O7 matrix. Therefore, SiC–Y2Si2O7 composite ceramics with high-efficiency EM wave absorption performance promise to be a novel wave absorbing material for applications in harsh environments.  相似文献   

20.
《Ceramics International》2020,46(2):1810-1815
Monoclinic hafnia (m-HfO2) films were prepared on polycrystalline AlN substrates via thermal and laser chemical vapor deposition (thermal CVD and laser CVD). Highly self-oriented growth of (020) and (002) m-HfO2 films was demonstrated at a high deposition rate. Films prepared using thermal CVD exhibited a porous microstructure and no preferred orientation, whereas those prepared using laser CVD exhibited significant proportions of (020) and (002)-oriented m-HfO2. The (020) and (002) orientations were observed to be as high as 90% and 98%, respectively. The (002)-oriented m-HfO2 film exhibited a columnar structure with a feather-like texture in cross-section, and with a pyramidal faceted surface. Deposition rates of the (002)-oriented m-HfO2 films reached 67 μm h−1, approximately 40 times greater than previously reported, thermal-CVD-grown m-HfO2 films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号