首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gadolinium zirconate (Gd2Zr2O7, GZO) as an advanced thermal barrier coating (TBC) material, has lower thermal conductivity, better phase stability, sintering resistance, and calcium-magnesium-alumino-silicates (CMAS) attack resistance than yttria-stabilized zirconia (YSZ, 6-8 wt%) at temperatures above 1200°C. However, the drawbacks of GZO, such as the low fracture toughness and the formation of deleterious interphases with thermally grown alumina have to be considered for the application as TBC. Using atmospheric plasma spraying (APS) and suspension plasma spraying (SPS), double-layered YSZ/GZO TBCs, and triple-layered YSZ/GZO TBCs were manufactured. In thermal cycling tests, both multilayered TBCs showed a significant longer lifetime than conventional single-layered APS YSZ TBCs. The failure mechanism of TBCs in thermal cycling test was investigated. In addition, the CMAS attack resistance of both TBCs was also investigated in a modified burner rig facility. The triple-layered TBCs had an extremely long lifetime under CMAS attack. The failure mechanism of TBCs under CMAS attack and the CMAS infiltration mechanism were investigated and discussed.  相似文献   

2.
《Ceramics International》2020,46(11):18698-18706
Three different kinds of thermal barrier coatings (TBCs) — 8YSZ, 38YSZ and a dual-layered (DL) TBCs with pure Y2O3 on the top of 8YSZ were produced on nickel-based superalloy substrate by air plasma spraying (APS). The Calcium–Magnesium–Aluminum-Silicate (CMAS) corrosion resistance of these three kinds of coatings were researched via burner rig test at 1350 °C for different durations. The microstructures and phase compositions of the coatings were characterized by SEM, EDS and XRD. With the increase of Y content, TBCs exhibit better performance against CMAS corrosion. The corrosion resistance against CMAS of different TBCs in descending was 8YSZ + Y2O3, 38YSZ and 8YSZ, respectively. YSZ diffused from TBCs into the CMAS, and formed Y-lean ZrO2 in TBCs because of the higher diffusion rate and solubility of Y3+ in CMAS than Zr4+. At the same time, 38YSZ/8YSZ + Y2O3 reacts with CAMS to form Ca4Y6(SiO4)6O/Y4·67(SiO4)3O with dense structure, which can prevent further infiltration of CMAS. The failure of 8YSZ coatings occurred at the interface between the ceramic coating and the thermally grown oxide scale (TGO)/bond coating. During the burner rig test, the Y2O3 layer of the DL TBCs peeled off progressively and the 8YSZ layer exposed gradually. DL coatings keep roughly intact and did not meet the failure criteria after 3 h test. 38YSZ coating was partially ablated, the overall thickness of the coating is thinned simultaneously after 2 h. Therefore, 8YSZ + Y2O3 dual-layered coating is expected to be a CMAS corrosion-resistant TBC with practical properties.  相似文献   

3.
《Ceramics International》2019,45(15):18255-18264
Thermal Barrier Coatings (TBCs) play a significant role in improving the efficiency of gas turbines by increasing their operating temperatures. The TBCs in advanced turbine engines are prone to silicate particles attack while operating at high temperatures. The silicate particles impinge on the hot TBC surfaces and melt to form calcia-magnesia-aluminosilicate (CMAS) glass deposits leading to coating premature failure. Fine powder of CMAS with the composition matching the desert sand has been synthesized by solution combustion technique. The present study also demonstrates the preparation of flowable yttria-stabilized zirconia (YSZ) and cluster paired YSZ (YSZ-Ln2O3, Ln = Dy and Gd) powders by single-step solution combustion technique. The as-synthesized powders have been plasma sprayed and the interaction of the free standing TBCs with CMAS at high-temperatures (1200 °C, 1270 °C and 1340 °C for 24 h) has been investigated. X-ray diffraction analysis of CMAS attacked TBCs revealed a reduction in phase transformation of tetragonal to monoclinic zirconia for YSZ-Ln2O3 (m-ZrO2: 44%) coatings than YSZ (m-ZrO2: 67%). The field emission scanning electron microscopic images show improved CMAS resistance for YSZ-Ln2O3 coatings than YSZ coatings.  相似文献   

4.
Calcium–magnesium–alumina–silicate (CMAS) corrosion significantly affects the durability of thermal barrier coatings (TBCs). In this study, Y2O3 partially stabilized ZrO2 (YSZ) TBCs are produced by electron beam-physical vapor deposition, followed by deposition of a Pt layer on the coating surfaces to improve the CMAS resistance. After exposure to 1250 °C for 2 h, the YSZ TBCs were severely attacked by molten CMAS, whereas the Pt-covered coatings exhibited improved CMAS resistance. However, the Pt layers seemed to be easily destroyed by the molten CMAS. With increased heat duration, the Pt layers became thinner. After CMAS attack at 1250 °C for 8 h, only a small amount of Pt remained on the coating surfaces, leading to accelerated degradation of the coatings. To fully exploit the protectiveness of the Pt layers against CMAS attack, it is necessary to improve the thermal compatibility between the Pt layers and molten CMAS.  相似文献   

5.
Degradation of yttria-stabilized zirconia (YSZ) layers by molten CaO-MgO-Al2O3-SiO2 (CMAS)-based deposits is an important failure mode of thermal barrier coating (TBC) systems in modern gas turbines. The present work aimed to understand how the chemical purity and microstructure of plasma-sprayed YSZ layers affect their response to CMAS corrosion. To this end, isothermal corrosion tests (1 h at 1250 °C) were performed on four different kinds of YSZ coatings: atmospheric plasma-sprayed (APS) layers obtained from standard- and high-purity feedstock powders, a dense – vertically cracked (DVC) layer, and a suspension plasma sprayed (SPS) one. Characterization of corroded and non-corroded samples by FEG-SEM, EBSD and micro-Raman spectroscopy techniques reveals that, whilst all YSZ samples suffered grain-boundary corrosion by molten CMAS, its extent could vary considerably. High chemical purity limits the extent of grain-boundary dissolution by molten CMAS, whereas high porosity and/or fine crystalline grain structure lead to more severe degradation.  相似文献   

6.
Calcium-magnesium-alumino-silicates (CMAS) corrosion in thermal barrier coatings (TBCs) is becoming more serious with increasing operation temperature of turbine engines. Here, we report an equimolar YO1.5 and TaO2.5 co-doped ZrO2 (Zr0.66Y0.17Ta0.17O2, ZYTO) as a potential CMAS-resistant material for TBCs, which shows a significantly enhanced CMAS resistance than the conventional 17 mol% YO1.5-stabilized ZrO2 (17YSZ). After exposure at 1300°C for 100 hours, the CMAS infiltration depth in ZYTO bulk is ~80 μm (for a 20 mg/cm2 CMAS deposition), in contrast to ~700 μm in 17YSZ bulk (50 hours). Compositional and morphological analyses on the CMAS reaction zone reveal that the excellent CMAS resistance of ZYTO originates from the uniform corrosion through grain and grain boundary, along with densification of the reaction layer. The high CMAS infiltration rate of 17YSZ is attributed to the severe dissolution and infiltration through grain boundary. The reaction mechanisms of CMAS with ZYTO and 17YSZ bulks are discussed and a strategy of enhancing the CMAS resistance is proposed for ZrO2-based TBC materials.  相似文献   

7.
Ingestion of siliceous particulate debris into both propulsion and energy turbines has introduced significant challenges in harnessing the benefits of enhanced operation efficiencies through the use of higher temperatures and thermal barrier coatings (TBCs). The so-called CMAS (for calcium-magnesium alumino-silicate) particles can melt in the gas path at temperatures greater than 1200C, where they will subsequently impact the coating surface and infiltrate through the carefully engineered porosity or cracks in a TBC. Ultimately, this CMAS attack causes premature spallation through its solidification and stiffening the ceramic during cooling. It has been noted in recent years, that TBCs based on yttria stabilized zirconia (YSZ) are completely non-resistant to CMAS attack due to their lack of reactivity with infiltrant liquid. New TBC ceramics such as Gadolinium Zirconate (GZO) show promise of CMAS resistance through rapid reaction-induced crystallization and solidification of the infiltrant, leading to its arrested infiltration. In both situations, the microstructure (porosity, micro and macro cracks) can be important differentiators in terms of the infiltration and subsequent failure mechanisms. This paper seeks to examine the interplay among microstructure, material, and CMAS attack in different scenarios. To do so, different types of YSZ & GZO single and multilayer coatings were fabricated using Air Plasma Spray (APS) and exposed to CMAS through isothermal and gradient mechanisms. In each of the cases, beyond their unique interactions with CMAS, it was observed the inherent microstructure and character of the porosity of the coating will have an additional role on the movement of the melt. For instance, vertical cracks can provide pathways for accelerated capillaric flow of the melt into both YSZ and GZO coatings. Based on these observations multilayer coatings have been proposed and realized toward potentially reducing complete coating failure and supporting multiple CMAS attack scenarios.  相似文献   

8.
The degradation of thermal barrier coatings (TBCs) by molten silicates (CMAS) represents a fundamental barrier to progress in gas turbine technology, requiring a mechanistic understanding of the problem to guide the development of improved coatings. This article investigates the dissolution of yttria-stabilized zirconia (7YSZ and 20YSZ) into two model silicate melts at 1300–1400 °C. The approach involves the 1D dissolution of YSZ into a semi-infinite melt, characterizing the dissolution rates of YSZ and the diffusion rates of Zr4+ and Y3+ therein. The assessed kinetics of YSZ dissolution and diffusion were then applied to modeling the same phenomena on TBC-relevant length scales. These findings provide fundamental insight into (i) the dissolution mechanism of YSZ, (ii) the subsequent reprecipitation upon saturation, (iii) the quantitative effects of temperature and melt composition on the dissolution and diffusion kinetics, and (iv) how the measured kinetics manifests on the scale of flow channels present in TBCs.  相似文献   

9.
We have evaluated the effectiveness of optical basicity, a chemical model, to predict and categorize the reaction behavior between calcia-magnesia-aluminosilicate (CMAS) deposits and ZrO2-based thermal barrier coatings (TBCs), which are used to insulate and protect metallic components in gas-turbine engines. The attack behavior of two CMAS compositions (Na-lean and Na-rich) with 7 wt% Y2O3-partially-stabilized ZrO2 (7YSZ) and 2ZrO2·Y2O3(ss) free-standing TBCs at 1340 °C were evaluated and compared to previous studies. The behavior of Y3+ in the reaction is correlated with the optical basicity of the CMAS; more basic Na-rich CMAS melt resulted in lower Y-solubility and higher Y-content in the reprecipitated ZrO2 grains than observed in the highly acidic CMAS attack for both tested TBCs. This behavior is consistent with previous studies of basic and acidic melts, and suggests that less acidic CMASs pose a unique danger to ZrO2-based TBCs that rely on Y-rich secondary phases for CMAS mitigation.  相似文献   

10.
During the past decade, gadolinium zirconate (Gd2Zr2O7, GZO) has attracted interest as an alternative material to partially yttria‐stabilized zirconia (YSZ) for thermal barrier coatings (TBCs). Despite the well‐known benefits of GZO, such as lower thermal conductivity and superior temperature capability compared to YSZ, processing of GZO via atmospheric plasma spraying (APS) still remains a challenge. Here, we report on APS experiments which were performed to investigate the influence of processing on GZO microstructure and lifetime of GZO/YSZ double‐layer TBCs. Different microstructures of GZO were produced and characterized in terms of porosity, stoichiometry, Young′s modulus, and their effects on the lifetime of YSZ/GZO double‐layer TBCs were discussed. Particle diagnostics were utilized for the optimization of the process parameters with respect to different microstructures of GZO and stoichiometry. It was found that both cumulative porosity of GZO and pore size distribution, which alter the Young′s modulus significantly, govern the lifetime of double layers. In addition, it was shown that the deviation in GZO stoichiometry due to gadolinia evaporation in the investigated range does not display any critical effect on lifetime.  相似文献   

11.
The impact of calcium–magnesium–alumino-silicate (CMAS) degradation is a critical factor for development of new thermal and environmental barrier coatings. Several methods of preventing damage have been explored in the literature, with formation of an infiltration inhibiting reaction layer generally given the most attention. Gd2Zr2O7 (GZO) exemplifies this reaction with the rapid precipitation of apatite when in contact with CMAS. The present study compares the CMAS behavior of GZO to an alternative thermal barrier coating (TBC) material, GdAlO3 (GAP), which possesses high temperature phase stability through its melting point as well as a significantly higher toughness compared with GZO. The UCSB laboratory CMAS (35CaO–10MgO–7Al2O3–48SiO2) was utilized to explore equilibrium behavior with 50:50 mol% TBC:CMAS ratios at 1200, 1300, and 1400°C for various times. In addition, 8 and 35 mg/cm2 CMAS surface exposures were performed at 1425°C on dense pellets of each material to evaluate the infiltration and reaction in a more dynamic test. In the equilibrium tests, it was found that GAP appears to dissolve slower than GZO while producing an equivalent or higher amount of pore blocking apatite. In addition, GAP induces the intrinsic crystallization of the CMAS into a gehlenite phase, due in part to the participation of the Al2O3 from GAP. In surface exposures, GAP experienced a substantially thinner reaction zone compared with GZO after 10 h (87 ± 10 vs. 138 ± 4 μm) and a lack of strong sensitivity to CMAS loading when tested at 35 mg/cm2 after 10 h (85 ± 13 versus 246 ± 10 μm). The smaller reaction zone, loading agnostic behavior, and intrinsic crystallization of the glass suggest this material warrants further evaluation as a potential CMAS barrier and inclusion into composite TBCs.  相似文献   

12.
《Ceramics International》2019,45(14):17409-17419
In order to explore the difference of CMAS corrosion resistance in high temperature and rainwater environment of single-layer and double-layer thermal barrier coatings (TBCs), and further reveal the mechanism of CMAS corrosion resistance in above environment of double-layer TBCs modified by rare earth, two TBCs were prepared by air plasma spraying, whose ceramic coating were single-layer ZrO2–Y2O3 (YSZ) and double-layer La2Zr2O7(LZ)/YSZ, respectively. Subsequently, CMAS corrosion resistance tests at 1200 °C and rainwater environment of two TBCs were carried out. Results demonstrate that after high temperature CMAS corrosion for the same time, due to phase transformation, the volume of YSZ ceramic coating in single-layer TBCs shrank and surface cracks formed, which would lead to coating failure. When LZ ceramic coating of double-layer TBCs reacted with CMAS, compact apatite phases and fluorite phases formed, the penetration of CMAS into ceramic coating was inhibited effectively. Raman analysis and calculation results show that both of the surface residual stress of ceramic coating in two TBCs were compressive stress, and the residual stress of ceramic coating in double-layer TBCs were smaller than that of single-layer TBCs. Atomic force microscopy of TBCs after CMAS corrosion show that surface of double-layer TBCs was more uniform and compact than that of single-layer TBCs. The electrochemical properties in simulated rainwater of two TBCs after high temperature CMAS corrosion showed that double-layer TBCs possessed higher free corrosion potential, lower corrosion current and higher polarization resistance than those of single-layer TBCs. Consequently, the presence of LZ ceramic coating effectively improved CMAS corrosion resistance in high temperature and rainwater environment of double-layer TBCs.  相似文献   

13.
《Ceramics International》2019,45(16):19710-19719
Because gas turbine engines must operate under increasingly harsh conditions, the degradation of thermal barrier coatings (TBCs) by calcium-magnesium-alumina-silicate (CMAS) is becoming an urgent issue. Mullite (3Al2O3·2SiO2) is considered a potential material for CMAS resistance; however, the performance of mullite in the presence of CMAS is still unclear. In this study, mullite and Al2O3–SiO2 were premixed with yttria stabilized zirconia (YSZ) in different proportions, respectively. Porous ceramic pellets were used to conduct CMAS hot corrosion tests, and the penetration of molten CMAS and its mechanism were investigated. The thermal and mechanical properties of the samples were also characterized. It was found that the introduction of mullite and Al2O3–SiO2 mitigated the penetration of molten CMAS into the pellets owing to the formation of anorthite, especially at 45 wt% mullite/55 wt% YSZ. Compared with Al2O3–SiO2, mullite possesses a higher chemical activity and undergoes a faster reaction with CMAS, thus forming a sealing layer in a short time. Additionally, the thermal expansion coefficient, thermal conductivity, and fracture toughness of different samples were considered to guide the architectural design. Considering the CMAS corrosion resistance, thermal and mechanical performance of TBCs systematically, a TBC system with a multilayer architecture is proposed to provide a theoretical and practical basis for the design and optimization of the TBC microstructure.  相似文献   

14.
《Ceramics International》2020,46(7):9311-9318
The corrosion of YSZ TBCs attacked by calcium–magnesium–aluminosilicate (CMAS) is a serious problem. Yttrium tantalite (YTaO4), a new kind of potential thermal barrier ceramic material, was expected to replace the YSZ to manufacture the TBCs because of its great thermophysical characteristics. In this study, porous YTaO4 ceramic pellets, instead of actual TBCs, were used to investigate the CMAS corrosion resistance at 1250 °C. Results indicated that CMAS couldn't cover the whole surface of YTaO4 pellets homogeneously because of low wettability between liquid CMAS and YTaO4, in addition, there was almost no reaction layer after 4 h reaction. The XRD results showed that M-YTaO4, M′-YTaO4, Ca2Ta2O7 and Y2Si2O7 were the main four phases after reaction and there was no phase containing the elements of Mg and Al. Compared with YSZ TBCs, this new kind of potential thermal barrier ceramic material showed well resistance to CMAS corrosion.  相似文献   

15.
Thermal barrier coatings (TBCs) used in gas-turbine engines afford higher operating temperatures, resulting in enhanced efficiencies and performance. However, during aero engine operation, environmentally ingested airborne particles, which includes mineral debris, sand dust and volcanic ashes get ingested by the turbine with the intake air. As engine temperatures increase, the finer debris tends to adhere to the coating surface and form calcium magnesium alumino-silicate (CMAS) melts that penetrate the open void spaces in the coating. Upon cooling at the end of an operation cycle, the melt freezes and the infiltrated volume of the coating becomes rigid and starts to spall by losing its ability to accommodate strains arising from the thermal expansion mismatch with the underlying metal. The state-of-the-art ZrO2-7-weight% Y2O3 (YSZ) coatings are susceptible to the aforementioned degradation. Rare-earth zirconates have generated substantial interest as novel thermal barrier coatings (TBC) based primarily on their intrinsically lower thermal conductivity and higher resistance to sintering than YSZ. In addition, the pyrochlore zirconates are stable as single phases at up to their melting point. La2Zr2O7 (LZ) is one among such candidates. Hence, the present study focusses on the comparison of cyclic molten CMAS infiltration behaviour of the base metal Inconel 738 (BM), the bond coat NiCrAlY (BC), the duplex YSZ, the LZ coating and a five layered coated specimen with LZ as top layer. Among those coatings mentioned above, the five layer coated specimen showed excellent CMAS infiltration resistance under thermal cycling conditions.  相似文献   

16.
Double layer thermal barrier coatings (TBCs) consisting of a Gd2Zr2O7 (GZO) top and an ytrria stabilized zirconia (YSZ) interlayer have been tested in a burner rig facility and the results compared to the ones of conventional YSZ single layers. In order to gain insight in the high temperature capability of the alternative TBC material, high surface temperatures of up to 1550 °C have been chosen while keeping the bond coat temperature similar. It turned out that the performance of all systems is largely depending on the microstructure of the coatings especially reduced porosity levels of GZO being detrimental. In addition, it was more difficult in GZO than in YSZ coatings to obtain highly porous and still properly bonded microstructures. Another finding was the reduced lifetime with increasing surface temperatures, the amount of reduction is depending on the investigated system. The reasons for this behavior are analyzed and discussed in detail.  相似文献   

17.
The impact of the penetration of small quantities of calcium-magnesium-alumino- silicates (CMAS) glassy melt in the porous plasma-sprayed (PS) thermal barrier coatings (TBCs) is often neglected even though it might play a non-negligible role on the sintering and hence on the thermal insulation potential of TBCs. In this study, the sintering potential of small CMAS deposits (from 0.25–3 mg.cm−2) on freestanding yttria-stabilized zirconia (YSZ) PS TBCs annealed at 1250 °C for 1 h was investigated. The results showed a gradual in-depth sintering with increasing CMAS deposits. This sintering was concomitant with local transformations of the tetragonal YSZ and resulted in an increase in the thermal diffusivity of the coatings that reached a maximum of ∼110 % for the fully penetrated coating.  相似文献   

18.
The CaO-MgO-Al2O3-SiO2 (CMAS) corrosion of thermal barrier coatings (TBCs) is a crucial problem for the lifetime of blades and vanes of jet engine and gas turbine at high operating temperature. Although many new alternative materials for TBCs have been developed in recent years, their application is limited by the CMAS corrosion. On the other hand, the composition difference of CMAS between regions makes solving this problem very difficult. Therefore, in this study, the yearly composition changes of sand-dust around Beijing area were investigated. The high-temperature corrosion behavior of air-plasma-sprayed 8YSZ and newly developed (LaxYb1−x)2Zr2O7 TBCs by the representative sand-dust of Beijing was investigated. In comparison, a universally used CaO-riched composition of simulated silicate deposit was also adopted for the TBCs corrosion test. It is found that the (LaxYb1−x)2Zr2O7 TBCs performs much better anti-corrosion behavior than that of 8YSZ, both by Beijing sand-dust and simulated one. Particularly, Yb2Zr2O7 TBCs appear to be the optimum material against silicate deposits attack. The mechanism of silicate deposits corrosion has also been discussed.  相似文献   

19.
The effects of Gd and Y doping on the corrosion resistance of ZrO2 in CMAS (CaO, MgO, Al2O3, SiO2) melts were investigated via first-principle calculations and experimental investigations. It is found that, although Gd2Zr2O7 with single Gd-doped ZrO2 has the lowest cohesive energy Ecohesive and formation enthalpy Hformation, YSZ(Gd) exhibits the lowest chemical activity with Y and Gd composite doping. The small Griffith’s rupture work (W = −3.498 J m−2) is beneficial to the flow of the CMAS melt on the YSZ(Gd) surface. Furthermore, the low Fermi energy and low O and Y electronegativities cause the weakest chemical activity. Additionally, the diffusion coefficients of Y, Zr, and O elements are also decreased through Gd-doping in YSZ. EDS investigations also demonstrate that the CMAS/YSZ(Gd) has the smallest reaction depth (6.65 μm) and the lowest elements penetration ability. Thus, the best corrosion resistance is originated from Y and Gd composite doping in YSZ(Gd) TBCs.  相似文献   

20.
Yttria stabilized zirconia (YSZ) thermal barrier coatings (TBCs) are used to protect hot-components in aero-engines from hot gases. In this paper, the microstructure and thermo-physical and mechanical properties of plasma sprayed YSZ coatings under the condition of calcium-magnesium-alumina-silicate (CMAS) deposits were investigated. Si and Ca in the CMAS rapidly penetrated the coating at 1250 °C and accelerated sintering of the coating. At the interface between the CMAS and YSZ coating, the YSZ coating was partially dissolved in the CMAS, inducing the phase transformation from tetragonal phase to monoclinic phase. Also, the porosity of the coating was reduced from ∼25% to 5%. As a result, the thermal diffusivity at 1200 °C increased from 0.3 mm2/s to 0.7 mm2/s, suggesting a significant degradation in the thermal barrier effect. Also, the coating showed a ∼40% increase in the microhardness. The degradation mechanism of TBC induced by CMAS was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号