首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Naringin (NAR), a major flavanone (FVA) glycoside, is a component of food mainly obtained from grapefruit. We used NAR as a food additive to improve the solubility and permeability of hydrophobic polyphenols used as supplements in the food industry. The spray-dried particles (SDPs) of NAR alone show an amorphous state with a glass transition temperature (Tg) at 93.2 °C. SDPs of hydrophobic polyphenols, such as flavone (FVO), quercetin (QCT), naringenin (NRG), and resveratrol (RVT) were prepared by adding varying amounts of NAR. All SDPs of hydrophobic polyphenols with added NAR were in an amorphous state with a single Tg, but SDPs of hydrophobic polyphenols without added NAR showed diffraction peaks derived from each crystal. The SDPs with NAR could keep an amorphous state after storage at a high humidity condition for one month, except for SDPs of RVT/NAR. SDPs with NAR enhanced the solubility of hydrophobic polyphenols, especially NRG solubility, which was enhanced more than 9 times compared to NRG crystal. The enhanced solubility resulted in the increased membrane permeability of NRG. The antioxidant effect of the hydrophobic NRG was also enhanced by the synergetic effect of NAR. The findings demonstrated that NAR could be used as a food additive to enhance the solubility and membrane permeability of hydrophobic polyphenols.  相似文献   

2.
The importance of granulation is paramount for tablet manufacturing, and is based on the fact that granulated powders are characterized by improved flowability, compressibility, segregation, and dust reduction. The aim of this study was to prepare and characterize continuous granules of high drug content by using a continuous-spray granulator (CTS-SGR). Ibuprofen (IBU), a drug of low-flowability, was selected as the model drug. As IBU has a low melting point and cannot easily granulate on its own, we employed isonicotinamide (INA) as a coformer that would allow us to prepare co-crystal granules containing 60 % IBU. The results of the undertaken differential scanning calorimetry and powder X-ray diffraction revealed that the IBU and the INA in the granules formed co-crystals. The granulation conditions affected the particle size and the yield of the granules; in fact, a low air supply temperature, a low atomizing air rate, and a high solution flow rate ensured a high granulation efficiency. Moreover, continuous granulation increased the yields of the formulations compared to those obtained through a short-run granulation, and high yields were obtained after applying a low atomizing air rate. The circularity of the granules exceeded 90 %, and their flowability improved when compared to that of the IBU bulk. The undertaking of dissolution studies revealed no change in the elution amount of IBU as a result of the co-crystallization. Our study shows that it is possible to produce high-content IBU granules in a direct and continuous manner through the co-crystallization of IBU and the use of a CTS-SGR.  相似文献   

3.
To explore the potential application of industrial waste, steel slag powder in combination with melamine pyrophosphate (MPP) was adopted to improve the flame retardancy of rigid polyurethane foam (RPUF). The incorporation of steel slag slightly reduced the thermal conductivity of the resulting flame-retardant RPUF samples. The addition of MPP and/or steel slag did not significantly alter the thermal stability in terms of T-10% and Tmax but did obviously increase the T-50% value, suggesting the improved thermal resistance of the residues. The coaddition of MPP and steel slag into RPUF resulted in higher LOI values and lower peak heat release rates than the samples incorporating either MPP or steel slag alone. The superior flame retardancy could be attributed to MPP promoting char formation, which then acted as a barrier at the beginning of RPUF thermal decomposition; simultaneously, the thermally stable inorganics in the steel slag powder strengthened the thermal resistance of this char layer.  相似文献   

4.
《Advanced Powder Technology》2020,31(5):2110-2118
The present study aimed at producing ZnO nanoparticles using the leaf extract of nettle (Urtica dioica) as a medicinally valuable plant to maximize the antidiabetic property of ZnO while excluding the chemical pollution from the synthesis process. The properties of the ZnO-extract sample were uncovered by various techniques and compared to that produced without the extract (ZnO). The results of the surface, optical, and thermal studies disclosed the presence of the extract biomolecules over the ZnO-extract sample and was further confirmed by GC–MS analysis. The ZnO-extract was intraperitoneally injected to alloxan-induced diabetic rats and the effects on the serum levels of fasting blood glucose, insulin, high-density lipoprotein cholesterol, total cholesterol, and total triglyceride were assessed. The obtained results were then compared with the effects of ZnO, nettle leaf extract, and insulin on the same factors. Among all the examined treatments, the best antidiabetic performance was obtained in the rats treated by ZnO-U. dioica extract mainly owing to the great synergistic interaction between its constituents.  相似文献   

5.
In recent years, electrochemical technologies have been widely used to remove contaminants at lab-scale and semi-pilot scale. Boron-doped diamond (BDD) electrodes have been considered as efficient materials for the abatement of persistent organic pollutants owing to their outstanding properties, such as rapid rates of electron-transfer for soluble redox systems, wide electrochemical potential window for water discharge reactions in aqueous and non-aqueous electrolytes, and high stability. Similar to other applications of electrochemical technology, wastes display medium to high ionic conductivity. Therefore, one of the applications highlighted for the electrolysis with these new electrodes is the treatment of soil-washing fluids, because in the polluted streams, washing of polluted soils provides a suitable conductivity to the effluent. In this context, this review summarizes the application of conductive diamond anodes for the electrochemical treatment of soil-washing effluents contaminated with different persistent organic pollutant such as pesticides, hydrocarbons, dyes, and organochlorine compounds, in single anodic oxidation processes and in other more complex processes such as electro-Fenton, photoelectrolysis, or sonoelectrolysis. Finally, the challenges and future research directions of electrochemical technology are discussed and outlined at pilot and prototype scale.  相似文献   

6.
7.
A combination of an electrospray setup and a quartz crystal microbalance with dissipation monitoring (QCM-D) was employed to study the drying of droplets of poly(vinylidene fluoride) (PVDF) dissolved in dimethylformamide (DMF). A novel variant of the QCM was used, which interrogates the resonance frequency and the resonance bandwidth on four overtones at the same time, achieving a time resolution of 2 ms. This instrument allowed to elucidate the mechanism of β-phase formation in electrospray deposition of PVDF. When the distance between the nozzle and the substrate was small, the droplets landed in a partially wet state, as evidenced from an increase in the resonance bandwidth. No such increase in bandwidth was observed when the distance was large. From the flight time (milliseconds) and the drying time on the substrate (seconds), one concludes that drying in the plume is faster than drying on the substrate. IR spectra show that the β–phase content is close to 100 % for particles, which dried in the plume. It is less than 50 % for particles having dried on the substrate. Fast drying promotes the formation of the β-phase. Follow-up experiments with thicker films on steel substrates also show increased β-phase content for larger distances.  相似文献   

8.
In the present work, computational fluid dynamics (CFD) based modelling of an industrial scale continuous fluidised bed roaster (FBR) has been carried out to study its performance at different operating conditions, so that the sulphide-sulphur content in the product is within 0.4% at the designed feed rate of 39.75 DMT/h. Eulerian-Eulerian multiphase model, considering four granular phases and one gas phase has been implemented to investigate the velocity and mass fraction profile of the particles in the FBR. The heat and species mass balance calculations have been performed external to CFD, by dividing the roaster into several sections. The conversion of ZnS to ZnO at various sections of the roaster has been estimated using reaction kinetics under isothermal condition (1203 K). The heat liberated and possible temperature rise at each section was predicted based on the heat of reaction and sensible heat of the solid and gaseous products. The CFD model was validated with the plant data for a feed rate of 36.5 DMT/h, air flow rate of 65,000 Nm3/h and O2 content of 21%. The proposed model predicted the sulphide-sulphur content in the product to be 0.4% for the designed feed rate of 39.75 DMT/h, when the O2 content in the inlet air was increased to 25%.  相似文献   

9.
Despite a good understanding of the filtration properties of various face and nose coverings during aerosol inhalation, their effectiveness in reducing aerosol emitted by infected individuals during exhalation or coughing is not fully characterized. This paper presents experiments conducted using a silicone model of a standardized face for controlled flow patterns (steady flow, typical exhalation or flow pulses associated with coughing/sneezing) used to push test aerosols (0.5–20 μm) through valved or non-valved respirators, surgical masks and cloth masks. The aerosol characteristics determined during experiments allowed quantitative comparison of size-dependent aerosol penetration for different flow conditions. The results showed that only aerosols smaller than 8.5–10 μm more easily penetrated beyond the face coverings tested but their concentrations outside were significantly reduced. Calculations based on experimental data showed that the amount of emitted airborne particles that can be inhaled into the lower respiratory tract of bystanders was reduced 1.3–5.7 times compared to the case when the spreader does not use a mask. These results bring additional quantitative information on the role of selected masks and respirators in reducing aerosol emission that potentially contribute to the transmission of viral diseases, including COVID.  相似文献   

10.
《Advanced Powder Technology》2020,31(5):2092-2100
Tapered wire coil insert is proposed as a novel enhancer in the double tube heat exchanger and experimental studies on Al2O3 + MgO hybrid nanofluid flowing under the turbulent condition are performed to investigate the hydrothermal characteristics. Effects of using tapered wire coil turbulator and hybrid nanofluid on the hydrothermal behaviors are examined for different coil configurations (Converging (C) type, Diverging (D) type and Conversing-Diverging (C-D) type) and hybrid nanofluid inlet temperatures and volume flow rates. Results show that D-type wire coil insert promotes better hydrothermal performance as compared to C-type and C-D type. Nusselt number and friction factor of hybrid nanofluid using D-type, C-D type and C-type wire coil inserts enhance up to 84%, 71% and 47%, and 68%, 57% and 46%, respectively than that of water in tube without insert. The entropy generation of hybrid nanofluid is lower than that of base fluid in all cases. The thermal performance factor for hybrid nanofluid is found more than one with all inserts. The thermal performance factor is observed a maximum of 1.69 for D-type coil. The study reveals that the hybrid nanofluid and tapered wire coil combination is promising option for improving the hydrothermal characteristics of double pipe heat exchanger.  相似文献   

11.
《Advanced Powder Technology》2019,30(12):2957-2963
Regularly ordered polymer nanoparticle (PNP) assemblies incorporating gold nanoparticle (Au NP) clusters into the PNP interstices were fabricated by a simultaneous deposition of PNPs and Au NPs on a glass substrate. Monodisperse PNPs with an average size of 66 nm were employed as a template in the co-assembly to create the sub-100 nm periodic Au nanostructures on the substrate. First, mono-layering of PNP array with incorporation of 14 nm Au NPs was performed by a drop-casting to examine the number ratio of Au NPs to PNPs for multi-layering. Absorption spectra of the mono-layered co-assemblies of PNPs and Au NPs were employed to characterize the clustered state of Au NPs in the interstices of mono-layered PNPs. The number ratio suitable for homogeneous incorporation of Au NPs clustered in the interstice was found to be ranged from 6 to 8 in the characterization. Then, multi-layered co-assemblies of PNPs and clustered Au NPs were fabricated by a vertical deposition method with the Au NP number ratio of 8 to PNPs. Lifting rate of the substrate on which the PNPs were deposited was varied in the vertical deposition method to tune the film thickness of NP co-assembly. A decrease in the lifting rate to 1 μm/s could thicken the film to 0.71 μm corresponding to 13 layers of PNPs, resulting in the fabrication of periodic structures of Au NP clusters with a high packing density. Signal-to-noise ratio in the Raman measurement using p-mercaptobenzoic acid as a target molecule was successfully enhanced by multi-layering of the co-assembly, indicating that Au NP clusters were homogeneously incorporated into the interstices of PNPs in the co-assemblies.  相似文献   

12.
The purpose of this study was to develop a site targeting montelukast sodium (MTK) microparticles as a respiratory drug delivery system using the spray freeze drying (SFD) process. A range of sugars and cyclodextrins (CDs) were screened as carrier in order to find compatible excipients for the preparation of dry powder inhalers (DPIs). The physical characteristics of collected powders were studied by scanning electron microscopy (SEM), laser light scattering, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). The aerodynamic behavior of the particles was also assessed using twin stage impinge (TSI). In the presence of simple sugars as carriers, highly porous particles in irregular shapes were produced. The use of CDs resulted in the formation of spherical particles with high porosity. Among all carriers that were used during the preparation of powders, raffinose had the best aerodynamic behavior with a fine particle fraction (FPF) of 60 % in sugar groups, while the lowest FPF was related to trehalose as carrier. Powders containing CDs mostly showed proper aerodynamic behavior, especially in formulations containing alfa-cyclodextrin (A-CD), beta-cyclodextrin (β-CD), and highly branched cyclic dextrin (HBCD). Overall, data indicated that the CDs were excellent excipients for use with MTK for respiratory drug delivery.  相似文献   

13.
The solution of instrumented indentation inverse problems by physically-based models still represents a complex challenge yet to be solved in metallurgy and materials science. In recent years, Machine Learning (ML) tools have emerged as a feasible and more efficient alternative to extract complex microstructure-property correlations from instrumented indentation data in advanced materials. On this basis, the main objective of this review article is to summarize the extent to which different ML tools have been recently employed in the analysis of both numerical and experimental data obtained by instrumented indentation testing, either using spherical or sharp indenters, particularly by nanoindentation. Also, the impact of using ML could have in better understanding the microstructure-mechanical properties-performance relationships of a wide range of materials tested at this length scale has been addressed.The analysis of the recent literature indicates that a combination of advanced nanomechanical/microstructural characterization with finite element simulation and different ML algorithms constitutes a powerful tool to bring ground-breaking innovation in materials science. These research means can be employed not only for extracting mechanical properties of both homogeneous and heterogeneous materials at multiple length scales, but also could assist in understanding how these properties change with the compositional and microstructural in-service modifications. Furthermore, they can be used for design and synthesis of novel multi-phase materials.  相似文献   

14.
Cumulative evidence shows that microenvironmental conditions play a significant role in the regulation of cell functions, and how cells respond to these conditions are of central importance to regenerative medicine and cancer cell response to therapeutics. Here, we develop a new method to examine cell mechanical properties by analyzing the motion of nanoparticles in living in mice, combining particle tracking with intravital microscopy. This method directly examines the mechanical response of breast carcinoma cells and normal breast epithelial cells under intravital microenvironments. Our results show both carcinoma and normal cells display significantly reduced compliance (less deformability) in vivo compared to the same cells cultured in 2D, in both sparse and confluent conditions. While the compliance of the normal cells remains steady over time, the compliance of carcinoma cells decreases further as they form tumor-like architectures. Integrating the cancer cells into spheroids embedded in 3D collagen matrices in part redirected the mechanical response to a state closer to the in vivo setting. Overall, our study demonstrates that the microenvironment is a crucial regulator of cell mechanics and the intravital particle tracking method can provide novel insights into the role of cell mechanics in vivo.  相似文献   

15.
As one of the most promising localized drug delivery systems for enhancing therapeutic efficacy and reducing systemic toxicity, supramolecular hydrogels self-assembled from natural products have recently attracted tremendous attention. However, the intricate drug loading process, limited drug entrapment efficacy, and lack of stimulus responsiveness considerably impede their potential for biological applications and raise the need for advanced hydrogel-based delivery systems. Therefore, the development of updated materials that integrate localized delivery and drug activity into a single system is extremely desired and has great potential to overcome the aforementioned shortcomings. In this study, a pH-responsive dual-functional isoG-based supramolecular hydrogel with both localized delivery and anti-cancer activity in one molecule is successfully developed in one pot by following a simple and green procedure. The isoguanosine-phenylboronic-guanosine (isoGPBG) hydrogel exhibits exceptional stability (more than one year), outstanding pH-responsiveness and excellent sustained release capability. Both in vitro and in vivo experiments demonstrate that the isoGPBG hydrogel not only shows acceptable biocompatibility and biodegradability but also significantly inhibit tumor growth (approximately 60% inhibition of tumor growth) and improve overall survival, especially in preclinical patient-derived xenograft (PDX) model of oral squamous cell carcinoma (OSCC). Therefore, the isoGPBG hydrogel, to the best of our knowledge, is the first example of pH-responsive dual-functional isoG-based supramolecular hydrogel integrating localized delivery and anti-cancer activity in one molecule. It is implied that the isoGPBG hydrogel could act as a smart dual-functional localized delivery system in the future for clinical cancer therapy.  相似文献   

16.
This paper presents a narrative literature review that addresses the issue of how disabled and aging people access the arts through technology. Our review synthesized 56 studies about disabled and aging people's experiences of access through technology, with a focus on methods used and accounts of user experiences/stories to inform a Canadian research and development initiative called Accessing the Arts. We urge designers and developers to consider the complex, multimodal sociotechnical relationships surrounding technology and access—or TechnoAccess—as they develop technology with disability, aging and access in mind. Although existing evidence offers ways to improve everyone's access to the arts, recommendations are provided for research around access and technology as an inherently politicized topic that must be informed by disabled and aging people's intersectional cultural experiences, including how they wish to use technology to access the arts.  相似文献   

17.
The objective of the present study was to investigate whether mixing ratio of maize and soybean meal (SBM) affects the breaking behaviour during hammer-milling in terms of the nutrient properties and in vitro digestibility of fractionated particles. Mixtures of maize and SBM with different proportions (% Maize:SBM; 0:100, 25:75, 50:50, 75:25, 100:0) were hammer milled using a 2-mm screen. The obtained powder was sieved into seven fractions with size ranges from 0.149 to 1.190 mm. Results show that energy consumption of grinding mixtures increased from 3.8 to 48.4 kJ/kg with the maize proportion increasing from zero to 100%. Mixing proportion of maize and SBM showed significant effects on nutrient content of fractionated material. For hammer milled material <595 µm, the in vitro digestibility of crude protein (CP) and organic matter (OM) of fractionated material decreased with increasing particle size. Additionally grinding fractionated particles ≥595 µm over a 1-mm sized screen before in vitro digestion analysis increased the digestibility of OM and CP. Equivalent particle size (EPS) and geometric standard deviation (GSD) of hammer milled maize and SBM and their mixtures correlated better than geometric mean diameter (GMD) to OM and CP in vitro digestibility in a linear regression model. In summary, the mixing ratio of maize and SBM had a significant effect on the breaking behaviour of ingredients and in vitro digestibility of CP and OM of the isolated fractions. Mixing ingredients before grinding is suggested in terms of saving energy consumption. The GSD/EPS of ground material should be considered while studying the effects of particle size distribution on the in vitro digestibility of nutrients.  相似文献   

18.
In blown powder directed energy deposition (DED) additive manufacturing powdered metal feedstock is pneumatically conveyed to the meltpool via a nozzle. DED nozzles have been the subject to a growing number of research efforts using computational fluid dynamics (CFD) with multiphase flows to study and optimize powder flow. However, many research papers published to date contain powder – nozzle impact dynamics behavior that is not realistic or not derived from experiments that resemble the powder conveyance process in the DED nozzle being studied. To provide a set of data representative of DED powder flow through a nozzle particle image velocimetry (PIV) experiments were conducted using 316L stainless steel metal powder and flat targets with varying surface roughness made of oxygen free copper, mild steel, P20 tool steel, 316L stainless steel, Inconel 718, and Ti-Al6-V4. Normal coefficients of restitution (COR) were calculated and compared to several analytical and empirical models in literature.  相似文献   

19.
Ni-rich layered oxides (NRLOs) and Li-rich layered oxides (LRLOs) have been considered as promising next-generation cathode materials for lithium ion batteries (LIBs) due to their high energy density, low cost, and environmental friendliness. However, these two layered oxides suffer from similar problems like capacity fading and different obstacles such as thermal runaway for NRLOs and voltage decay for LRLOs. Understanding the similarities and differences of their challenges and strategies at multiple scales plays a paramount role in the cathode development of advanced LIBs. Herein, we provide a comprehensive review of state-of-the-art progress made in NRLOs and LRLOs based on multi-scale insights into electrons/ions, crystals, particles, electrodes and cells. For NRLOs, issues like structure disorder, cracks, interfacial degradation and thermal runaway are elaborately discussed. Superexchange interaction and magnetic frustration are blamed for structure disorder while strains induced by universal structural collapse result in issues like cracks. For LRLOs, we present an overview of the origin of high capacity followed by local crystal structure, and the root of voltage hysteresis/decay, which are ascribed to reduced valence of transition metal ions, phase transformation, strains, and microstructure degradation. We then discuss failure mechanism in full cells with NRLO cathode and commercial challenges of LRLOs. Moreover, strategies to improve the performance of NRLOs and LRLOs from different scales such as ion-doping, microstructure designs, particle modifications, and electrode/electrolyte interface engineering are summarized. Dopants like Na, Mg and Zr, delicate gradient concentration design, coatings like spinel LiNi0.5Mn1.5O4 or Li3PO4 and novel electrolyte formulas are highly desired. Developing single crystals for NRLOs and new crystallographic structure or heterostructure for LRLOs are also emphasized. Finally, remaining challenges and perspectives are outlined for the development of NRLOs and LRLOs. This review offers fundamental understanding and future perspectives towards high-performance cathodes for next-generation LIBs.  相似文献   

20.
A novel approach for preparing drug-containing particles (DCPs) with controlled size distribution and high drug loading was developed using melt granulation. This approach comprises two steps. First, melting component adsorbed particles (MAs) were prepared by mixing and heating the melting components with a porous carrier using a high shear granulator. Second, DCPs were prepared by layering the drug on MAs using a fluidized bed rotor granulator. The time taken for both steps was within 30 min. Adding the polymer in the second step remarkably increased the viscosity of the mixture of melting components and the polymer. Therefore, DCPs could be successfully loaded with a high amount of drug (70% w/w). The particle size distribution of the DCPs was narrow, and it depended on that of the MAs. The flowability of the DCPs was excellent, and the sphericity was close to 1. A unique particle formulation mechanism was suggested based on the observation of DCPs using scanning electron microscopy. The manufacturing time and DCP characteristics were not affected by the manufacturing scale. In conclusion, we have successfully developed a highly efficient novel approach for preparing optimal DCPs through melt granulation, named “Melt Adsorption and Layering with Porosity Core” (MALCORE®).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号