首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Coal fly ash, a solid state waste massively produced from coal combustion, is considered to be highly hazardous to the environment due to its persistently toxic trace elements. High-value added waste recycling is a promising technique to address this issue. In this work, a waste-to-resource strategy is proposed for design of highly porous whisker-structured mullite ceramic membranes derived from waste coal fly ash and Al(OH)3 as raw materials and MoO3 as a single sintering additive. These were characterized in terms of their dynamic sintering behavior, shrinkage, bulk density, porosity, phase evolution, microstructure, pore size distribution, N2 permeation flux, and mechanical strength. Addition of molybdenum trioxide effectively inhibited the sintering densification of membranes while at the same time forming a metastable low viscosity liquid at lower temperatures. This enables formation of a novel and more highly porous whisker-interlocked structure and accelerates the growth of mullite whiskers with controllable morphologies. Without degradation of mechanical properties, the open porosity increased significantly from 41.65 ± 0.13% to 58.14 ± 0.15% with increasing MoO3 content from 0 to 20 wt.% without any pore-forming agent, while shrinkage and pore size decreased. The method proposed in this study is expected not only to give a new and facile insight for high-value added recycling of waste coal fly ash but also to fabricate low-cost high performance ceramic membranes with novel structures for further environmental applications.  相似文献   

2.
《Ceramics International》2023,49(10):15655-15664
Recycling fly ash for ceramic membrane fabrication not only reduces solid waste discharge, but also decreases the membrane cost. Now, fly ash is becoming a promising substitute material for ceramic membrane preparation. A significant difference between fly ashes from different plants is the particle size, which makes performances of fly ash membranes unpredictable. The novelty of this work is to clarify the effects of the particle size of fly ash on ceramic membranes, thereby giving practical suggestions on fly ash selection for ceramic membrane preparation. Ceramic membranes were fabricated with different sizes of fly ashes. Effects of particle size on porosity, pore size, microstructure, mechanical strength and gas permeability of the membrane were investigated. Results indicate that a broader particle size distribution of fly ash leads to a denser structure of membrane with a lower porosity. Pore size and gas permeability of membrane increase while bending strength decreases with the particle size increasing. Bending strength of a fly ash membrane is largely determined by large particles in the fly ash because the large particles lead to cracks in the membrane. This work provides experimental bases for developing high performance ceramic membranes from fly ash.  相似文献   

3.
Coal fly ash (CFA) is a solid waste generated by coal-fired power plants, and its massive accumulation problem needs to be solved urgently. There are many ways of resource utilization of CFA, but the applications of high added value are rare. Preparation of porous materials is an effective way to realize its high value-added applications. In this paper, porous materials are divided into ceramic membranes, thermal insulation materials and adsorption materials according to application fields. The research progress of porous materials prepared from CFA and used for filtration, thermal insulation and adsorption is reviewed. Ceramic membranes can filter different types of wastewater from different industries at different levels. Thermal insulation materials, with relatively low added value though, are easier to achieve large-scale production. Zeolites, geopolymers and various composite materials are crackerjack adsorbents, which can effectively purify wastewater and exhaust gas. After summary, comparison and discussion, it is concluded that ceramic membrane is the most ideal and feasible material to realize high value-added application of CFA among the three porous materials. Finally, the existing problems and future prospects of the three porous materials are stated.  相似文献   

4.
We focus on fly ashes of different sizes and their alkali-activation on ceramic products. Backscattered electron imaging-energy dispersive X-ray spectroscopy was used to classify coal fly ash particles according to particle size and to study the pre-activation of particles with different sizes. Secondary electron imaging-energy dispersive X-ray spectroscopy was used to study the role of coal fly ash particles of different sizes in ceramic bodies before and after alkali-activation. Ash particles can be divided into three classes based on size: clay-, quartz- and feldspar-like particles, which act as clay, quartz and feldspar, respectively, in ceramic bodies. The pre-activation process contributes to the plasticity of ash particles, the crystal skeleton role of clay-like particles and the fluxing agent role of feldspar-like particles, so preprocessing can improve the performance of ash-based ceramic tiles significantly. This research provides a new pretreatment method for coal fly ash in ceramic fields.  相似文献   

5.
Low-cost porous mullite ceramic membrane supports were fabricated from recycling coal fly ash with addition of natural bauxite. V2O5 and AlF3 were used as additives to cause the growth of mullite crystals with various morphologies via an in situ reaction sintering. Dynamic sintering, microstructure and phase evolution of the membrane supports were characterized in detail and open porosity, pore size, gas permeation and mechanical properties were determined. It showed the membrane support with 3 wt.% V2O5 and 4 wt.% AlF3 addition exhibits an open porosity of ∼50%, mechanical strength of 69.8 ± 7.2 MPa, an interlocking microstructure composed of anisotropically grown mullite whiskers with an aspect ratio of 18.2 ± 3.6 at 1300 °C. Addition of more V2O5 lowered the secondary mullitization temperature, resulting in more mullite formation at lower temperatures. The fabricated membrane supports feature high porosity without mechanical strength degradation, possible strengthening mechanism of the mullite whiskers was further discussed.  相似文献   

6.
研究了入炉煤水分对焦炭冷热强度、粒度等的影响。比较了同高度装煤及同干煤量不同高度装煤条件下焦饼中心温度的差异。试验结果表明,当入炉煤水分减少时,干基成焦率提高,但焦饼收缩率降低,焦炭冷热强度改善,尤其是焦炭反应后强度提升明显,焦炭粒度呈减小趋势,焦炭均匀性改善;在保持相同干煤量的情况下,水分越少,升温速度越快。  相似文献   

7.
B. Ersoy  T. Kavas  S. Ba?p?nar  G. Önce 《Fuel》2008,87(12):2563-2571
The effect of BaCO3 (witherite) addition on the sintering behavior of lignite coal fly ash taken from the Seyitömer power plant of Kütahya/Turkey was examined at temperatures of 1100, 1150 and 1200 °C in air atmosphere. Bloating of the fly ash samples sintered at 1150 °C was prevented, that is, the decomposition temperature of CaSO4 in the fly ash is shifted to a higher temperature, and their physico-mechanical properties (porosity, water absorption, bulk density and bending strength) were improved with BaCO3 addition. Positive effects of BaCO3, however, were not seen on the fly ash samples sintered at 1100 °C. All the fly ash samples sintered at 1200 °C were bloated due to the gas evolving and also they melted. During the thermal treatment at 1150 °C a phase transformation from CaSO4 (anhydrite) to BaSO4 (Barite) occurred in the fly ash with BaCO3 addition as seen from the X-ray diffraction (XRD) patterns and the bar shaped fly ash samples with BaCO3 saved their structural integrity up to 1150 °C.  相似文献   

8.
Influence of trace metal distribution on its leachability from coal fly ash   总被引:1,自引:0,他引:1  
The risks associated with the reuse of coal fly ash in natural environmental settings in terms of their mobility and ecotoxicological significance is largely determined by: (1) the physicochemical conditions the fly ash is placed under; (2) the total leachable metal content in fly ash and; (3) the distribution or mineralogical fractionation of metals. In this study, we report the mobility of As, Cr, Pb, Fe, Cu and Zn from a single Class F fly ash (CFFA). The influence of pH on metal release was compared to the total leachable metal content, as determined by single and sequential chemical extractions. The results show that the CFFA sample is environmentally safe under natural pH conditions, with metal leaching less than the mandated RCRA limits. The elements Fe, Pb and Cr were moderately soluble at acidic pH and sparingly soluble beyond neutral pH. Arsenic release from CFFA was higher under aggressive pH conditions (pH < 4 and pH > 9) and consistent with its oxyanionic behavior. Partial dissolution of the acid soluble (exchangeable) fraction at acidic pH; desorption of oxyanions at alkaline pH; adsorption and or co-precipitation of metals with iron (hydr) oxides at neutral pH appeared to be the probable mechanisms controlling metal release. While simple EDTA extractions provided good indications of the total leachable amounts, a direct correlation with pH leaching data was impossible as the mineralogical distribution of the metals in the fly ash appeared to play a significant role in their leachability. In the case of Class F fly ash, metal association with Fe-oxide appeared to play a more dominant role in metal release.  相似文献   

9.
马语峻  刘向军 《化工学报》1951,73(9):4103-4112
化石燃料燃烧烟气中含有大量水分和潜热,高湿度烟气的直接排放造成极大的资源浪费和环境问题。多孔陶瓷膜是目前烟气水热回收最有前景的技术之一,其水分回收热力学和动力学的定量描述是该技术发展和装置设计的关键所在。分析了水分在多孔陶瓷膜表面及内部传质机理,基于Kelvin理论建立了水分在陶瓷膜内毛细凝聚热力学模型,并选取典型烟气温/湿度条件,得出不同工况下陶瓷膜发生毛细凝聚的临界孔径、凝聚水量及工作孔体积占比;进而基于毛细凝聚的表面传质和孔道输运Hagen-Poiseuille方程建立了陶瓷膜水分传质动力学模型,对典型温/湿度工况下回收水通量进行了计算,结果表明,多孔陶瓷膜的毛细凝聚效应对烟气水分回收的优越性十分明显,其表面回水通量远远大于冷凝法的水通量,孔径越小,表面水通量越高,但及时将孔道内的液态水输运到陶瓷膜另一侧需要的压差也越大,本文计算条件下,膜孔径为20.0 nm的陶瓷膜较为适宜。  相似文献   

10.
马语峻  刘向军 《化工学报》2022,73(9):4103-4112
化石燃料燃烧烟气中含有大量水分和潜热,高湿度烟气的直接排放造成极大的资源浪费和环境问题。多孔陶瓷膜是目前烟气水热回收最有前景的技术之一,其水分回收热力学和动力学的定量描述是该技术发展和装置设计的关键所在。分析了水分在多孔陶瓷膜表面及内部传质机理,基于Kelvin理论建立了水分在陶瓷膜内毛细凝聚热力学模型,并选取典型烟气温/湿度条件,得出不同工况下陶瓷膜发生毛细凝聚的临界孔径、凝聚水量及工作孔体积占比;进而基于毛细凝聚的表面传质和孔道输运Hagen-Poiseuille方程建立了陶瓷膜水分传质动力学模型,对典型温/湿度工况下回收水通量进行了计算,结果表明,多孔陶瓷膜的毛细凝聚效应对烟气水分回收的优越性十分明显,其表面回水通量远远大于冷凝法的水通量,孔径越小,表面水通量越高,但及时将孔道内的液态水输运到陶瓷膜另一侧需要的压差也越大,本文计算条件下,膜孔径为20.0 nm的陶瓷膜较为适宜。  相似文献   

11.
《Ceramics International》2016,42(7):8409-8412
Ceramic hollow spheres were produced by a sacrificial template technique with subsequent sintering under temperatures ranging from 1100 °C to 1250 °C. The effect of the sintering temperature on the structure of the ceramic hollow spheres was investigated by optical and scanning electron microscopy, and a gas adsorption method. The results show that the structure of the ceramic hollow spheres can be controlled, with the retention of the hollow spherical shape, by variation of the sintering temperature. Increase of the sintering temperature from 1100 °C to 1250 °C decreased the outer diameter of the ceramic hollow spheres by 14 percent, the shell thickness by 18 percent, and the void area ratio of the shell surface by 9.2 times; both of the specific surface area and the total pore volume of ceramic hollow spheres decreased by 60 percent.  相似文献   

12.
《Ceramics International》2022,48(15):21268-21282
Mullite-Al2O3-SiC composites were in-situ synthesized through carbothermal reduction reaction of fly ash (FA) with a high alumina content and activated carbon (AC). The effects of sintering temperature, holding time, and amount of AC on the β-SiC yield, microstructure, dielectric properties, and electromagnetic (EM) absorption performance of the composites in the 2–18 GHz frequency range were studied. The results show that increasing the AC improves the porosities of the composites, with the highest porosity of 56.17% observed. The β-SiC yield varies considerably as the sintering parameters were altered, with a maximum yield of 23% achieved under conditions of 12 wt% AC, 1400 °C sintering temperature, and 3 h holding time. With a thickness of 3.5 mm, this composite has excellent EM absorption performance, exhibiting a minimum reflection loss (RLmin) of -51.55 dB at 7.60 GHz. Significantly, the maximum effective absorption bandwidth (EAB) reaches 3.39 GHz when the thickness is 3.0 mm. These results demonstrate that the composite prepared under ideal conditions can absorb 99.99% of the waves passing through it. Because of the interfacial polarization, conductive loss, and impedance matching of the heterostructure, the synthesized mullite-Al2O3-SiC composites with densities ranging from 1.43 g/cm3 to 1.62 g/cm3 demonstrate outstanding EM attenuation capabilities. Therefore, this study presents a remarkable way of utilizing fly ash to fabricate inexpensive, functional ceramic materials for EM absorption applications.  相似文献   

13.
In this paper, SiO2, Cr2O3, Al2O3, and MgO were used as ceramic aggregates, and a small amount of Al powder was added. A ceramic coating was prepared on a Q235 steel substrate. The effect of the sintering temperature on the coating microstructure, phase structure and wear resistance was studied by Scanning Electron Microscope (SEM), X-ray Diffraction (XRD) and friction and wear testing. The results show that the tensile strength of the ceramic coating is increased after sintering, the structure becomes dense, and the size of coated micropores is increased to release the internal tensile stress. With the increase of the sintering temperature and tensile stress, the micropores begin to release the excess tensile stress in the form of crack initiation and expansion. The mineralization of MgO, Cr2O3, nMgO and mSiO2 phases can be achieved by sintering the coating at 200?°C; the oxygen in the atmosphere migrates along the micropores in the coating to react with Fe in the steel substrate, forming FeO, and the resulting FeO reacts with the SiO2 in the coating to form the Fe2SiO4 phase. The coating has the best wear resistance after being sintered at 400?°C, and the abrasion resistance of the sample is 6.7 times higher than that of the sample dried at room temperature.  相似文献   

14.
New microfiltration membranes from mineral coal fly-ash material are obtained using ceramic method. Paste from mineral coal fly ash (obtained by calcinations at 800 °C of non-grinded mineral coal) is extruded to elaborate a porous tubular configuration used as supports. The support heated at 1125 °C, shows an average pore diameter and porosity of about 4.5 μm and 51%, respectively. The properties in terms of mechanical and corrosion resistances are very interesting. The elaboration of the layer based on fly-ash powder (obtained by sintering at 700 °C of a finely grinded mineral coal) is performed by slip-casting method. The heating treatment at 800 °C leads to an average pore size of 0.25 μm. The water permeability determined of this membrane is 475 L/h m2 bar. This membrane can be used for crossflow microfiltration. The application to the treatment of the dying effluents generated by the washing baths in the textile industry shows an important decrease of turbidity (inferior to 1 NTU), of chemical oxygen demand (COD) values (retention rate of about 75%) and a total color removal. The performances in term of permeate flux and efficiency were determined and compared to those obtained using a commercial alumina microfiltration membrane. Almost the same stabilised permeate flux was obtained (about 100 L h−1 m−2). So, it seems that the prepared membrane is suitable for such wastewater treatment.  相似文献   

15.
Coal fly ash is an industrial solid waste generated from coal preparation during the processing and cleaning of coal for electric power generation. Comprehensive investigation on the reutilization of waste heat of activated coal fly ash is of great economic significance. The method of recovering the waste heat, proposed in this study,is the transfer of heat from activated coal fly ash to gas with the movement of air using the packed bed, providing valuable energy sources for preheating the raw coal fly ash to reduce the overall energy consumption. The investigation is carried on the heat transfer characteristics of gas–solid(activated coal fly ash) phases and air temperature fields of the packed bed under some key conditions via computational fluid dynamics. A two dimensional geometry is utilized to represent key parts of packed bed. The distribution mechanism of the temperature field for gas phase is analyzed based on the transient temperature contours at different times. The results show that the obtained rule of gas–solid heat transfer can effectively evaluate the influences of operating parameters on the air temperature in the packed bed. Simultaneously, it is found that no temperature differences exist in the hot air at the outlet of the packed bed. The investigation provides guidance for the design and optimization of other similar energy recovery apparatuses in industries.  相似文献   

16.
《Ceramics International》2015,41(4):5648-5655
Lime mud is a kind of waste generated during causticization reaction of an alkali recycling process in paper industry. Lime mud and fly ash were reused as raw materials to fabricate anorthite ceramics through solid state reactions. Both sintering temperature and lime mud content influenced the crystalline phases in the prepared ceramics. Anorthite was the major phase in all samples (samples L36, L40, L50 and L60) and it was prominent in sample L36 (containing 36 wt% lime mud). The results also showed that anorthite ceramic can be synthesized at low sintering temperature (1100 °C). Gehlenite and wollastonite were formed in the samples possessing higher calcium (above 40 wt% lime mud) or at lower sintering temperatures. Bulk density, water absorption and compressive strength were measured. These ceramics were of light weight and had high water absorption. Recycling of lime mud and fly ash as raw materials of anorthite ceramic is a feasible approach to solve the solid wastes.  相似文献   

17.
Mullite bonded SiC ceramic membranes were synthesized by a facile solid-state reaction process, using SiC, solid waste fly ash as raw materials and MoO3 as catalyst for growth of mullite at 1000 °C. The effect of MoO3 catalyst on mullitization reaction and mullite morphology was investigated. Different pore formers were used to enhance the porosity and to observe its effects on the permeability parameters and filtration characteristics. At room temperature Darcian (k1) and non-Darcian (k2) in both water and air flow were measured and clean water flux was determined. The porous SiC ceramics with addition of 5 wt.% MoO3 exhibited a flexural strength of 38.4 MPa at porosity 36.4 vol% and showed 92% oil removal efficiency from oily wastewater. This technique, combining low-cost materials and the co-sintering at low temperature, can serve as a cost-effective method for the production of high-performance porous SiC ceramic membrnaes for filtration application.  相似文献   

18.
Sintered glass-ceramics were produced from coal fly ashes, red mud from aluminum production and silica fume. The capabilities of Tunçbilek fly ash and a mixture of Orhaneli fly ash, red mud and silica fume to be vitrified and devitrified by sintering process were investigated by means of scanning electron microscopy and X-ray diffraction analysis. To determine the effect of binder in the sintering technique, glass powders were pressed without or with the addition of polyvinyl alcohol. Owing to microstructural observations, density and hardness measurements, it can be said that physical properties and the hardness of the produced samples strongly depended on the crystallization degree of the samples. Toxicity characteristic leaching procedure test results showed that glass-ceramic samples produced by using sintering technique could be considered as non-hazardous materials. Chemical durability of the sintered glass-ceramic samples was also good. Microstructural investigations, hardness and physical properties of the samples indicated that the addition of polyvinyl alcohol improved the properties of sintered glass-ceramics obtained from Orhaneli fly ash, red mud and silica fume.  相似文献   

19.
Leaching characteristics of boron and selenium for various coal fly ashes   总被引:2,自引:0,他引:2  
The leaching characteristics of B and Se for coal fly ash (CFA) were examined. Twenty-one CFA samples were subjected to a leaching test, in which CFA was shaken with pure water in a liquid to solid ratio (L/S) of 100 for 24 h at room temperature. The correlation between the leaching amount and the concentration of element in CFA was investigated. The leaching amounts of B, Ca, S, and Se were essentially dependent upon their concentrations in CFA. As the degree of % leaching was higher, the leaching amount was more dependent upon the concentration. Also, the leaching test was performed under constant pH conditions. The leaching of Se tended to increase as the pH in the aqueous phase was raised. For CFA samples, which gave large degree of Ca leaching amount, the leaching of B and Se was decreased especially under high alkaline conditions. The effects of pH and the presence of leached Ca ion in the aqueous phase upon the leaching behavior were discussed.  相似文献   

20.
赵泽森  崔莉  郭彦霞  程芳琴 《化工学报》2021,72(6):3239-3251
镓被广泛应用于半导体、催化、医疗等多个领域。随着半导体行业的蓬勃发展,对镓需求量的日益增长促使人们寻找新的来源。从粉煤灰中回收镓不仅可以减少环境污染和资源浪费,还可以一定程度上缓解对镓资源日益增长的需求。综述了粉煤灰中镓的赋存形式、浸出工艺和镓提取分离方法的最新研究进展,重点介绍了溶剂萃取法和吸附法用于粉煤灰中镓资源回收的现状,总结了现有技术存在的问题,并对粉煤灰中镓资源的回收进行了展望,提出了粉煤灰中镓和其他伴生元素协同提取的资源化利用方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号