首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC high-entropy ceramic matrix composites were reported for the first time. Based on the systematic study of the pyrolysis and solid-solution mechanisms of (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C precursor by Fourier transform infrared spectroscopy, TG-MS and XRD, Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC with uniform phase and element distribution were successfully fabricated by precursor infiltration and pyrolysis. The as-fabricated composites have a density and open porosity of 2.40 g/cm3 and 13.32 vol% respectively, with outstanding bending strength (322 MPa) and fracture toughness (8.24 MPa m1/2). The Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC composites also present excellent ablation resistant property at a heat flux density of 5 MW/m2, with linear and mass recession rates of 2.89 μm/s and 2.60 mg/s respectively. The excellent combinations of mechanical and ablation resistant properties make the Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC composites a new generation of reliable ultra-high temperature materials.  相似文献   

2.
A novel high‐entropy carbide ceramic, (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C, with a single‐phase rock salt structure, was synthesized by spark plasma sintering. X‐ray diffraction confirmed the formation of a single‐phase rock salt structure at 26‐1140°C in Argon atmosphere, in which the 5 metal elements may share a cation position while the C element occupies the anion position. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C exhibits a much lower thermal diffusivity and conductivity than the binary carbides HfC, ZrC, TaC, and TiC, which may result from the significant phonon scattering at its distorted anion sublattice. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C inherits the high elastic modulus and hardness of the binary carbide ceramics.  相似文献   

3.
《Ceramics International》2022,48(12):17234-17245
The microstructure and mechanical properties of (Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)B2 high-entropy boride (HEB) were first predicted by first-principles calculations combined with virtual crystal approximation (VCA). The results verified the suitability of VCA scheme in HEB studying. Besides, single-phase (Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)B2 ceramics were successfully fabricated using boro/carbothermal reduction (BCTR) method and subsequent spark plasma sintering (SPS); furthermore, the effects of different amounts of B4C on microstructure and mechanical properties were evaluated. Due to the addition of B4C and C, all samples formed single-phase solid solutions after SPS. When the excess amount of B4C increased to 5 wt%, the sample with fine grains exhibited superior comprehensive properties with the hardness of 18.1 ± 1.0 GPa, flexural strength of 376 ± 25 MPa, and fracture toughness of 4.70 ± 0.27 MPa m1/2. Nonetheless, 10 wt% excess of B4C coarsened the grains and decreased the strength of the ceramic. Moreover, the nanohardness (34.5–36.9 GPa) and Young's modulus (519–571 GPa) values with different B4C contents just showed a slight difference and were within ranges commonly observed in high-entropy diboride ceramics.  相似文献   

4.
The relationships between microstructures and mechanical properties especially strength and toughness of high-entropy carbide based ceramics are reported in this article. Dense (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C (HEC) and its composite containing 20 vol.% SiC (HEC-20SiC) were prepared by spark plasma sintering. The addition of SiC phase enhanced the densification process, resulting in the promotion of the formation of the single-phase high-entropy carbide during sintering. The high-entropy carbide phase demonstrated a fast grain coarsening but SiC particles remarkably inhibited this phenomena. Dense HEC and HEC-20SiC ceramics sintered at 1900 °C exhibits four-point bending strength of 332 ± 24 MPa and 554 ± 73 MPa, and fracture toughness of 4.51 ± 0.61 MPa·m1/2 and 5.24 ± 0.41 MPa·m1/2, respectively. The main toughening mechanism is considered to be crack deflection by the SiC particles.  相似文献   

5.
A nano dual-phase powder with great sinterability was synthesized by molten-salt assisted borothermal reductions at 1100 °C using B, ZrO2, HfO2, Ta2O5, Nb2O5 and TiO2 powders as raw materials. Single-phase (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2 high-entropy ceramic was prepared by spark plasma sintering using the as-synthesized nano dual-phase powder. Oxidation behavior of the (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2 ceramic was investigated over the range of 30–1400 °C in air and the result indicated that the rapid oxidation of ceramic began at 1300 °C. The phenomenon could be ascribed to the rapid volatilization of B2O3 from oxide scale. A layered structure was formed at the cross section of (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2 ceramic after oxidation. The relationship between partial pressures of gaseous metal oxides and oxygen partial pressures was calculated, which inferred that the formation of layered structure could be ascribed to the active oxidation of (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2, the generation of gaseous metal oxides, their outward diffusion and further oxidation.  相似文献   

6.
The influences of different contents ranging 0–15 wt% of high-entropy boride (HEB) (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 on the mechanical properties of SiC-based ceramics using Al2O3-Y2O3 sintering additives sintered by spark plasma sintering process were investigated in this study. The results showed that the introduction of 5 and 10 wt% (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 could facilitate the densification and the grain growth of SiC-based ceramics via the mechanism of liquid phase sintering. However, the grain growth of SiC-based ceramics was inhibited by the grain boundary pinning effect with the addition of 15 wt% (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2. The SiC-based ceramics with 15 wt% (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 showed the enhanced hardness (21.9±0.7 GPa) and high toughness (4.88±0.88 MPa·m1/2) as compared with high-entropy phase-free SiC-based ceramics, which exhibited a hardness of 16.6 GPa and toughness of 3.10 MPa·m1/2. The enhancement in mechanical properties was attributed to the addition of higher hardness of HEB phase, crack deflection toughening mechanism, and presence of residual stress due to the mismatch of coefficient of thermal expansion.  相似文献   

7.
To prepare large-sized and complex-shaped components, the feasibility of direct diffusion bonding of (Hf0.2Zr0.2Ti0.2Ta0.2Nb0.2)C high-entropy ceramic (HEC) and its diffusion bonding with a metallic Ni foil was investigated, and the interfacial microstructure and mechanical properties of HEC/HEC and HEC/Ni/HEC joints were analyzed. For the direct diffusion bonding, reliable joints with a shear strength of 146 MPa could be achieved when the bonding temperature reached 1500 °C under a pressure of 30 MPa. By introducing a metallic Ni foil as the interlayer, the HEC was successfully bonded at the diffusion temperatures from 1150 °C to 1250 °C under 10 MPa through the formation of Ti2Ni compound phase. Meanwhile, the HEC(Ni) phase formed by the diffusion of Ni into HEC and Ni(s, s) bulks precipitated in the bonding transition zone. The maximum joint shear strength of 151 MPa was obtained by optimizing the Ni-foil thickness, bonding temperature, and holding time.  相似文献   

8.
The formation possibility of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramic (HHC-1) was first analyzed by the first-principles calculations, and then, it was successfully fabricated by hot-pressing sintering technique at 2073 K under a pressure of 30 MPa. The first-principles calculation results showed that the mixing enthalpy and mixing entropy of HHC-1 were −0.869 ± 0.290 kJ/mol and 0.805R, respectively. The experimental results showed that the as-prepared HHC-1 not only had an interesting single rock-salt crystal structure of metal carbides but also possessed high compositional uniformity from nanoscale to microscale. By taking advantage of these unique features, it exhibited extremely high nanohardness of 40.6 ± 0.6 GPa and elastic modulus in the range from 514 ± 10 to 522 ± 10 GPa and relatively high electrical resistivity of 91 ± 1.3 μΩ·cm, which could be due to the presence of solid solution effects.  相似文献   

9.
In this study, the low temperature fabrication of a Cf/BNi/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiCm high entropy ceramic (HEC) ceramic matrix composite (CMC) was achieved through slurry coating and laminating (SCL) combined with precursor infiltration and pyrolysis (PIP). Firstly, the (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C HEC powder was synthesized by pressureless sintering and ball milling. Then, a Cf/BNi/HECm CMC preform was obtained by the SCL process. At last, the composite was densified by PIP of SiC at 1200 °C and a Cf/BNi/HEC-SiCm CMC was the final result. The density and open porosity of the HEC-CMC were 2.7 g/cm3 and 10%, respectively. The composite had a relatively high flexural strength (269 ± 25 MPa) and flexural modulus (53.3 ± 7.9 GPa). Fiber degradation was scarcely detected and fiber pullout was clearly observed. Most importantly, the fabrication method is simple and the fabrication temperature is rather low. This study opens a new insight for high entropy ceramic matrix composites fabrication.  相似文献   

10.
High-entropy (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)Cx ceramics, with different carbon contents (x=0.55?1), were prepared by spark plasma sintering using powders synthesized via a carbothermal reduction approach. Single-phase, high-entropy (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)Cx ceramics could be obtained when using a carbon content of x=0.70?0.85. Combined ZrO2 and Mo-rich carbide phases, or residual graphite, existed in the ceramics due to either a carbon deficiency or excess at x=0.55 and 1, respectively. With the carbon content increased from x=0.70 to x=0.85, the grain size decreased from 4.36 ± 1.55 μm to 2.00 ± 0.91 μm, while the hardness and toughness increased from 23.72 ± 0.26 GPa and 1.69 ± 0.21 MPa·m1/2 to 25.45 ± 0.59 GPa and 2.37 ± 0.17 MPa·m1/2, respectively. This study showed that the microstructure and mechanical properties of high-entropy carbide ceramics could be adjusted by the carbon content. High carbon content is conducive to improving hardness and toughness, as well as reducing grain size.  相似文献   

11.
In the current work, fine-grained dual-phase, high-entropy ceramics (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2-(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C with different phase ratios were prepared from powders synthesized via a boro/carbothermal reduction approach, by adjusting the content of B4C and C in the precursor powders. Phase compositions, densification, microstructure, and mechanical properties were investigated and correlated. Due to the combination of pinning effect and the boro/carbothermal reduction approach, the average grain size (~0.5?1.5 μm) of the dual-phase high-entropy ceramics was roughly one order of magnitude smaller than previously reported literature. The dual-phase high-entropy ceramics had residual porosity ranging from 0.3 to 3.2 % upon sintering by SPS and the material with about 18 vol% boride phase exhibited the highest Vickers hardness (24.2±0.3 GPa) and fracture toughness (3.19±0.24 MPam1/2).  相似文献   

12.
In this work, a novel (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)(N0.5C0.5) high-entropy nitride-carbide (HENC-1) with multi-cationic and -anionic sublattice structure was reported and their thermophysical and mechanical properties were studied for the first time. The results of the first-principles calculations showed that HENC-1 had the highest mixing entropy of 1.151R, which resulted in the lowest Gibbs free energy above 600 K among HENC-1, (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)N high-entropy nitrides (HEN-1), and (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy carbides (HEC-1). In this case, HENC-1 samples were successfully fabricated by hot-pressing sintering technique at the lowest temperature (1773 K) among HENC-1, HEN-1 and HEC-1 samples. The as-fabricated HENC-1 samples showed a single rock-salt structure of metal nitride-carbides and high compositional uniformity. Meanwhile, they exhibited high microhardness of 19.5 ± 0.3 GPa at an applied load of 9.8 N and nanohardness of 33.4 ± 0.5 GPa and simultaneously possessed a high bulk modulus of 258 GPa, Young's modulus of 429 GPa, shear modulus of 176 GPa, and elastic modulus of 572 ± 7 GPa. Their hardness and modulus are the highest among HENC-1, HEN-1 and HEC-1 samples, which could be attributed to the presence of mass disorder and lattice distortion from the multi-anionic sublattice structure and small grain in HENC-1 samples. In addition, the thermal conductivity of HENC-1 samples was significantly lower than the average value from the “rule of mixture” between HEC-1 and HEN-1 samples in the range of 300-800 K, which was due to the presence of lattice distortion from the multi-anionic sublattice structure in HENC-1 samples.  相似文献   

13.
《Ceramics International》2023,49(7):10280-10286
Using pre-synthesized high-entropy (Ta0.2W0.2Nb0.2Mo0.2V0.2)C carbide as the reinforcing phase, Ti(C0.7N0.3)-based cermets were prepared by pressureless sintering at 1600 °C. The results revealed that due to the solid solution reaction between the mono-carbide and (Ta0.2W0.2Nb0.2Mo0.2V0.2)C, only one set of face-centered-cubic diffraction peaks in XRD was detected in the as-sintered cermets, alongside the typical core-rim structure. Compared to the Ti(C0.7N0.3)-based cermets without high-entropy reinforcing phase, the Vickers hardness was increased from 17.06 ± 0.09 GPa to 18.42 ± 0.33 GPa and the fracture toughness was increased from 9.21 ± 0.31 MPa m1/2 to 12.56 ± 0.23 MPa m1/2 by adding 10 wt% (Ta0.2W0.2Nb0.2Mo0.2V0.2)C. The wear resistance of the cermet was enhanced significantly with increasing (Ta0.2W0.2Nb0.2Mo0.2V0.2)C content. This work provided a potential that the high-entropy carbide can be applied as an effective reinforcing phase in the preparation of high-performance Ti(C0.7N0.3)-based cermets.  相似文献   

14.
In this contribution, the ternary BCN anion systems of high-entropy ceramics (HEC) are consolidated by hot-pressing sintering and the impacts of sintering temperature and the content of amorphous BCN addition on microstructural evolution and mechanical performance were evaluated. Results confirmed that high-entropy, oxide, and BN(C) phases were precipitated for (Ta0.2Nb0.2Zr0.2Hf0.2Ti0.2)(B, C, N) ceramics after sintering at 1900°C. With the decrease of BCN addition, a new phase of MiB2 (Mi representing the metal atoms) occurred. The Vickers hardness, bending strength, elastic modulus, and fracture toughness of the optimized bulk HECs were investigated, obtained at 24.5 ± 2.3 GPa, 522.0 ± 2.6 MPa, 478.9 ± 11.1 GPa, and 5.36 ± 0.56 MPa m1/2, respectively.  相似文献   

15.
(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics (HEC) with a submicron grain size of 400 to 600 nm were fabricated by spark plasma sintering using a two-step sintering process. Both X-ray and neutron diffractions confirmed the formation of single-phase with rock salt structure in the as-fabricated (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C samples. The effect of submicron grain size on the thermal stability and mechanical properties of HEC was investigated. The grain growth kinetics in the fine-grained HEC was small at 1300 and 1600°C, suggesting high thermal stability that was possibly related to the compositional complexity and sluggish diffusion in HEC. Compared to the coarse-grain HEC with a grain size of 16.5 µm, the bending strength and fracture toughness of fine-grained HEC were 25% and 20% higher respectively. The improvement of mechanical properties in fine-grained HEC may be attributed to micromechanistic mechanisms such as crack deflection.  相似文献   

16.
《Ceramics International》2019,45(8):9799-9806
(Nb1-xTax)4AlC3 (x = 0–0.5) ceramics were prepared by the hot press sintering method. The XRD results show that the second phase (Nb1-xTax)C is formed when the Ta content increases to 25 mol%. The SEM micrographs show that (Nb1-xTax)C has a core/rim structure, whose formation mechanism was also investigated. Substituting some Ta for Nb can significantly improve the mechanical properties of Nb4AlC3. (Nb0.75Ta0.25)4AlC3 exhibits an excellent fracture toughness of 8.3 ± 0.3 MPa m1/2 at room temperature (RT). The highest Young's modulus (349 ± 16 GPa) and Vickers hardness (4.5 ± 0.3 GPa) at RT are exhibited by the (Nb0.5Ta0.5)4AlC3 sample, which correlate to increases of 18% and 80%, respectively, compared with those of Nb4AlC3. The flexural strengths of (Nb0.5Ta0.5)4AlC3 are 439 ± 18 MPa at RT and 344 ± 22 MPa at 1100 °C, which correlate to increases of 27% and 45%, respectively, compared with those of Nb4AlC3. The solid solution of Ta and the formation of (Nb1-xTax)C are beneficial to the strengthening of Nb4AlC3. The coefficient of thermal expansion (CTE) increases slightly from 7.08 × 10−6 K−1 for Nb4AlC3 to 7.24 × 10−6 K−1 for (Nb0.75Ta0.25)4AlC3 at 25–1400 °C. The thermal conductivity of (Nb0.75Ta0.25)4AlC3 (28.4–29.8 W/m·K) is higher than that of Nb4AlC3 (18.1–21.2 W/m·K) over the whole test range (25–1000 °C). Owing to their excellent mechanical and thermal properties, Ta-doped Nb4AlC3 ceramics have good potential as structural materials.  相似文献   

17.
A theoretical calculation combined with experiment was used to study high-entropy (Hf0.2Ti0.2Mo0.2Ta0.2Nb0.2)B2 (HEB-HfTiMoTaNb). The theoretical calculation suggested HEB-HfTiMoTaNb could be stable over a wide temperature range. Then, a novel solvothermal/molten salt-assisted borothermal reduction method was proposed to efficiently pre-disperse transitional metal atoms in a precursor and synthesize (Hf0.2Ti0.2Mo0.2Ta0.2Nb0.2)B2 nanoscale powders at 1573 K for 6 h, which is nearly 300 K lower than previous reports. The characterization results indicated that the as-synthesized nanoscale HEB-HfTiMoTaNb powder was hexagonal single-phase with homogeneous elements distribution and uniform size, and the oxygen content of the particles is 0.97 wt%. Simultaneously, the mechanical properties, anisotropic nature, and thermal properties of HEB-HfTiMoTaNb were investigated by density functional theory (DFT) calculations. The Cannikin's law was adopted to explain the improvement of comprehensive mechanical properties. In addition, a significant reduction of thermal conductivity was observed for HEB-HfTiMoTaNb and it only was 1/15 of the value of HfB2. This work suggests a reliable technique for synthesis of nanosized HEB powders and discovery of high-entropy materials under the guidance of first-principle theory.  相似文献   

18.
The ablation performance of a high-entropy ceramic carbide, (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C, was performed by oxyacetylene ablation flame, simulating the extreme service environment at 2000 ºC. Phase and microstructure characterization at multi-length scales was carried out. During ablation, a compositionally and microstructurally complex oxidation layer formed on the ablation surface, which consisted of a combination of (ZrxHf1?x)6(NbyTa1?y)2O17, Ti(NbxTa1?x)2O7, and Tix(ZraHfbNbcTa1?a-b-c)1?xO2. Based on the microstructure information, the ablation mechanisms were proposed considering the oxidation thermodynamics and kinetics. Comparable rates of O inward diffusion and Ti outward diffusion are suggested, and a particular innermost dense layer composed of isolated (ZrxHf1?x)6(NbyTa1?y)2O17 grains embedded in a continuous Ti(NbxTa1?x)2O7 matrix is considered to be beneficial for a better ablation resistance.  相似文献   

19.
Starting from metal oxides, B4C and graphite, a suite of high-entropy boride ceramics, formulated (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2, (Hf0.2Zr0.2Mo0.2Nb0.2Ti0.2)B2 and (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 derived from boro/carbothermal reduction at 1600 °C were fabricated by spark plasma sintering at 2000 °C. It was found that the synthetic high-entropy boride crystalized in hexagonal structure and the yield of the targeting phase was calculated to be over 93.0 wt% in the sintered ceramics. Benefitting from the nearly full densification (96.3% ˜ 98.5% in relative density) and the refined microstructure, the products exhibited the relatively high Vickers hardness. The indentation fracture toughness was determined to be comparable with the single transition metal-diboride ceramics. It should be noted that the formation of high-entropy boride ceramics were featured with the relatively high hardness at no expense of the fracture toughness.  相似文献   

20.
Temperature above 2000°C and additional pressure is generally required to achieve the full densification of TaxHf1−xC-based ceramics. This work proposed a novel method to fabricate dense Ta0.2Hf0.8C ceramics at relatively low temperature. Using a small amount of Si as a sintering aid, Ta0.2Hf0.8C was densified at 1700°C by reactive hot-pressing (RHP), with SiC formed in situ. Microstructure evolution mechanisms of the ceramics during RHP were investigated. The effect of silicon content on the densification and mechanical properties of the ceramics was revealed. It is indicated that the apparent porosity of the Ta0.2Hf0.8C–SiC ceramics was as low as 0.5%, whereas bending strength and fracture toughness of the ceramics were as high as ∼637 MPa and 6.7 MPa m1/2, respectively, when the silicon content was 8 wt.%. This work provides a new idea for the low-temperature densification of TaxHf1−xC and other ultrahigh temperature ceramics with high performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号