共查询到19条相似文献,搜索用时 78 毫秒
1.
张骏 《数字社区&智能家居》2006,(3):87-89
众所周知,垃圾邮件问题已经是当今网络世界的一个严重问题。大量无用,甚至有害的信件在网络传播,不仅消耗了大量的网络资源,而且还严重威胁到邮件系统用户信息的安全。本文将用采用基于内容的文本检索过滤技术对电子邮件进行判别及分类. 相似文献
2.
张骏 《数字社区&智能家居》2006,(8)
众所周知,垃圾邮件问题已经是当今网络世界的一个严重问题。大量无用,甚至有害的信件在网络传播,不仅消耗了大量的网络资源,而且还严重威胁到邮件系统用户信息的安全。本文将用采用基于内容的文本检索过滤技术对电子邮件进行判别及分类。 相似文献
3.
赵翠林 《计算机光盘软件与应用》2010,(10):111-111
自从互联网普及以来,电子邮件逐渐成为人们生活中便捷的通信手段之一。但随之产生的垃圾邮件泛滥成灾,污染网络环境,占用大量传输、存储和运算资源,影响了网络的正常运行。垃圾邮件过滤技术逐渐成为信息网络安全研究领域的热点。本文从内容过滤、接入过滤、行为过滤等三方面对垃圾邮件过滤技术的研究现状进行综述。 相似文献
4.
针对目前垃圾邮件过滤技术仅依赖单一邮件特征实施邮件分类、对邮件特征变化的适应性较差等局限,提出一种基于用户反馈的混合型垃圾邮件过滤方法。以用户社会网络关系为基础,借助用户反馈机制分别实现对基于内容与基于身份标识的邮件分类知识的动态更新;在此基础上采用贝叶斯模型,实现邮件的内容特征与发件人身份标识特征在邮件分类中的有机结合。实验结果表明,与传统的过滤方法比较,所提方法在邮件特征动态变化的环境下能够获得更好的邮件分类效果,邮件分类的总体召回率、查准率、精确率均能达到90%以上。所提方法能够在保证邮件分类性能的同时,有效提高邮件分类对邮件特征变化的适应性,是已有垃圾邮件过滤技术的重要补充。 相似文献
5.
垃圾邮件制造者常常将文字嵌入到图像中,产生了大量的图片垃圾邮件.为解决这一问题,提出并实现了一个基于截图内容的图片垃圾邮件过滤方案.首先由用户从垃圾邮件中截取某一子域图片,每一截图对应一类垃圾图片,所有的截图构成一个自定义的垃圾图片“黑名单”.其次对读入的每一封图片邮件,其内置图片与“黑名单”中的图片进行图像匹配.最后若存在匹配项,则判定该邮件含有用户已指定的垃圾图片信息.将此图片垃圾邮件过滤方案应用于一个小型的邮件收发系统,使用3 534幅垃圾邮件图片进行实验,结果证明了该垃圾邮件过滤方案有效. 相似文献
6.
7.
目前的图像垃圾邮件过滤技术,大都采用国际上通用的垃圾图像数据集作为训练集,与中国国内图像垃圾邮件的图像特点不一致,图像数据缺乏实时更新,且分类器单一,过滤效果难以保证。针对该问题,在建立国内垃圾邮件图像数据库的基础上,首先提取图像的颜色、纹理和形状特征,再经K-NN分类算法优选出HSV颜色直方图特征对不同分类器进行训练、测试和性能比较,提出将基于粗糙集的K-NN算法、Naive Bayes算法和SVM算法构成的3种基分类器相结合,并基于串行迭代提升的方法形成集成学习的强分类器。该方法可以实现对国内图像垃圾邮件的有效过滤,使图像垃圾邮件过滤的准确率和召回率同时得到提升,分别为97.3%和96.1%,误判率降低到了2.7%。 相似文献
8.
电子邮件给我们的生活带来了极大的便利,但是许多无用的信息也随之而来。贝叶斯算法是一种基于内容的垃圾邮件过滤方法,文章首先给出了其应用原理,接着分析了其相比于其他过滤方法的优缺点,特别是其用于处理中文垃圾邮件时的不足之处。最后提出了一些改进措施及发展方向。 相似文献
9.
10.
基于内容的特定图像过滤方法 总被引:13,自引:0,他引:13
针对互联网中色情图像传播愈来愈严重的现象,在充分分析色情图像的特征的基础上,提出基于计算机视觉与模式识别的图像过滤方法,该方法将人体肤色模型、面部模型以及图像轮廓、面积等多项图像特征识别技术相结合,实现网络色情图像识别过滤。该过滤方法,能够有效地过滤掉网络色情图像,实验结果表明,该方法能够达到80%以上的准确率,具有较高的实用性和应用价值。 相似文献
11.
一种快速的基于URL的垃圾邮件过滤系统 总被引:2,自引:0,他引:2
垃圾邮件是当前Internet上关注一个焦点问题,随着垃圾邮件的伪装技术的不断更新,以前主要的几种垃圾邮件过滤技术面临着新的挑战。针对目前垃圾邮件大都含有要宣传网站的URL地址的特点,我们构建了一个基于URL的垃圾邮件过滤系统,通过查询邮件中是否含有URL黑名单中的URL地址,来识别垃圾邮件。在URL地址查询过程中,采用Hplf散列函数来加速查询。通过试验测试,该系统能有效地减少垃圾邮件的数量。 相似文献
12.
基于覆盖算法的垃圾邮件过滤 总被引:2,自引:0,他引:2
电子邮件系统分类的正确性与风险性是评价邮件系统好坏的关键因素,邮件过滤是文本分类问题的一种特殊应用.将神经网络中的覆盖算法引入到邮件过滤中,结合多种特征降维方法进行邮件分类实验,并与SVM方法进行了比较.给出一个结合覆盖算法、合适的特征选择与降维方法的分类器,可以实现较好的效果.另外,根据垃圾邮件过滤在实际使用中的最小风险性的要求,从风险角度分析了覆盖算法对测试样本进行分类时的过程.根据分析结果提出对其拒识样本的处理过程进行改进,通过改变非垃圾邮件所属覆盖的影响范围降低了垃圾邮件过滤时的风险. 相似文献
13.
14.
朴素贝叶斯算法在垃圾邮件过滤领域得到了广泛应用,该算法中,特征提取是一个必不可少的环节。过去针对中文的垃圾邮件过滤方法都以词作为文本的特征项单位进行提取,面对大规模的邮件训练样本,这种算法的时间效率会成为邮件过滤技术中的一个瓶颈。对此,提出一种基于短语的贝叶斯中文垃圾邮件过滤方法,在特征项提取阶段结合文本分类领域提出的新的短语分析方法,按照基本名词短语、基本动词短语、基本语义分析规则,以短语为单位进行提取。通过分别以词和短语为单位进行垃圾邮件过滤的对比测试实验证实了所提出方法的有效性。 相似文献
15.
该文提出一种多层grams特征抽取方法来提升基于在线支持向量模型的垃圾邮件过滤器。基于在线支持向量机模型的垃圾邮件过滤器在大规模垃圾邮件数据集已取得了很好的过滤效果,但与逻辑回归模型相比,计算性能的耗时是巨大的,很难被工业界所运用。该文提出的多层grams特征抽取方法能够有效减少特征数,抽取更精准有效的特征,大幅降低模型的运行时间,同时提升过滤器的过滤效果。实验表明,该方法使得在线支持向量机模型的运行时间从10337s减少到3784s,同时模型(1-ROCA)%降低了一半。 相似文献
16.
17.
18.