首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为提高大坝变形预测精度,基于“分解-重构”思想,采用变形信号处理技术对实测变形加以时频分解,并结合深度学习网络对分解信号分项预测再重构,提出一种基于优化变分模态分解(VMD)与门控循环单元(GRU)的混凝土坝变形预测模型。该模型使用灰狼优化算法(GWO)优化的VMD把原始数据分解为一组最优本征模态分量(IMF),利用GWO优化的GRU网络对每个IMF分量进行滚动预测,通过叠加各个分量的预测结果得到位移序列预测结果,解决了VMD人工选择参数导致分解效果差及GRU人工选择参数影响训练速度、使用效果及鲁棒性等问题。工程实例预测结果表明,该模型的预测误差小,具有良好的预测精度与稳健性。  相似文献   

2.
为提高混凝土坝变形监测数据的预测精度,构建了一种基于集成经验模态分解(EEMD)与样本熵重构(SE)的长短期记忆网络(LSTM)预测模型.模型利用EEMD对原始数据序列进行分解,并计算每个分量序列的样本熵,以原始序列样本熵作为基准进行重构,再对重构后的各序列建立LSTM模型进行预测,最后把各预测值叠加以得到最终预测结果.以某混凝土拱坝为例,将该模型预测结果与EMD-LSTM、LSTM和SVM模型的预测结果进行对比,结果表明EEMD-SE-LSTM模型具有更高的预测精度,在混凝土坝的变形预测中具备更好的可行性与优越性.  相似文献   

3.
基于经验模态分解(EMD)、改进的极限学习机(MELM)以及马尔科夫链,提出了一种新的混合模型。由于混凝土坝的变形可看成静水压力、环境温度和时间效应而产生的变形,前两者体现总变形中的周期性分量,后者体现为总变形中的趋势性分量,所以在数据预处理阶段,利用经验模态分解技术将坝体总位移序列分解为趋势分量位移和周期分量位移,选择多项式函数预测趋势分量位移,提出了一种改进的极限学习机,即均值学习机集成(MELM),采用MELM模型对周期分量进行预测。再使用马尔科夫链修正模型对两个模型的拟合残差进行修正预测,叠加各预测值得到最终预测值。在某混凝土坝的应用表明,该组合模型的拟合及预测精度明显优于传统模型,具有操作简便、预测精度高、训练速度快等优点。  相似文献   

4.
基于经验模态分解(EMD)、改进的极限学习机(MELM)以及马尔科夫链,提出了一种新的混合模型。由于混凝土坝的变形可看成静水压力、环境温度和时间效应而产生的变形,前两者体现总变形中的周期性分量,后者体现为总变形中的趋势性分量,所以在数据预处理阶段,利用经验模态分解技术将坝体总位移序列分解为趋势分量位移和周期分量位移,选择多项式函数预测趋势分量位移,提出了一种改进的极限学习机,即均值学习机集成(MELM),采用MELM模型对周期分量进行预测。再使用马尔科夫链修正模型对两个模型的拟合残差进行修正预测,叠加各预测值得到最终预测值。在某混凝土坝的应用表明,该组合模型的拟合及预测精度明显优于传统模型,具有操作简便、预测精度高、训练速度快等优点。  相似文献   

5.
坝肩边坡变形在外部因素影响下呈现出不确定性和随机性,从而不易预测。基于聚类模态分解(EEMD)、样本熵(SE)和改进型粒子群算法优化的最小二乘支持向量机(IPSO-LSSVM)方法,提出一种名为EEMD-SE-IPSO-LSSVM的坝肩边坡变形预测模型。首先,利用EEMD将原始坝肩边坡变形时间序列分解为若干个不同复杂度的子序列,并基于SE判定各子序列的复杂度,将相近的子序列进行合并重组以减少计算规模;然后,分别对各重组子序列建立IPSO-LSSVM预测模型;最后,将各预测分量进行叠加重构,得到最终的大坝变形预测值。以澜沧江苗尾水电站左岸坝肩边坡为例,将BPNN、RBFNN、LSSVM、EEMD-SE-LSSVM与EEMD-SE-PSO-LSSVM进行对比研究。结果表明,该模型的计算精度优于其他神经网络模型,具有较好的适宜性和稳定性,是一种可靠的坝肩边坡变形预测方法,能够为大坝安全监测提供有价值的参考。  相似文献   

6.
由于混凝土坝变形监测数据有明显的非线性、非平稳特征,且数据序列包含一定的噪声,容易导致模型预测精度不高。针对上述问题,提出了基于自适应噪声完全集合经验模态分解(CEEMDAN)-排列熵(PE)-长短时记忆神经网络(LSTM)的混凝土坝变形预测模型。利用CEEMDAN对非线性信号的自适应分解能力,将原始变形数据分解为频率不同、复杂度差异明显的一组固有模态函数(IMF),降低序列中不同尺度信息的相互影响。基于PE算法将复杂度相近的IMF分量进行合并重组。最后,对若干重组序列分别构建LSTM模型进行预测,将预测结果相加得到最终变形预测值。以某混凝土坝水平位移监测数据进行建模分析,结果表明:CEEMDAN-PE-LSTM模型与常规模型相比预测精度显著提高,能更好地对非线性数据序列进行预测。与单一的LSTM模型相比,平均绝对误差、平均绝对百分比误差和均方根误差分别降低了76.43%、75.55%和74.73%,表明该模型通过对原始序列的分解与重组获取不同尺度特征,可以更好地把握非线性、非平稳数据的变化规律,提高预测精度,能有效运用于混凝土坝的变形预测。  相似文献   

7.
针对传统径流预测模型对月径流序列尖峰点预测精度不足的问题,文章提出了一种VMD-EEMD-CNN-LSTM混合预测模型。首先,对原始月径流序列进行变分模态分解(VMD)处理,得到具有有限带宽的本征模态分量(VMF)和较高复杂性的残差项(Res)。然后通过集合经验模态分解(EEMD)对Res进行二次分解,有效挖掘原始径流的隐藏信息。把各分量作为卷积神经网络(CNN)-长短期记忆网络(LSTM)组合预测模型的输入,最后对各预测结果进行叠加重构,得到最终的结果。以乌江流域洪家渡水电站实测月径流数据为例,结果表明:VMD-EEMD-CNN-LSTM模型具有更高的精确度,能有效提高对月径流序列尖峰点的预测精度。  相似文献   

8.
针对混凝土坝变形实测数据序列的不规律性和预测精度欠佳等问题,基于复合建模思想提出一种基于WA-LSTM-ARIMA的大坝变形组合预测模型。首先通过小波多分辨率分析对原始监测序列进行多尺度分解,从中提取高频周期性分量、低频趋势性分量和高频随机性分量;然后将去噪处理后的随机分量与高频周期性分量融合得到综合高频序列,并使用LSTM进行建模预测,对于低频趋势性分量则应用ARIMA模型进行预测,将两组预测结果叠加后即可得到最终的坝体变形预测结果;最后通过工程实例证明该模型所得预测值与实测值拟合较好,与传统的静态模型预测结果对比表明,该模型的预测精度更高。  相似文献   

9.
提出了一种基于移动最小二乘响应面和变分模态分解(Variational mode decomposition,VMD)的抽水蓄能机组振动参数演化预测方法。首先利用移动最小二乘响应面建立抽水蓄能机组振动参数实时评估模型。然后利用VMD将复杂非线性的机组振动参数时间序列分解若干个平稳分量时间序列。其次对每个分量进行特性识别,根据其不同属性,分别采用LS-SVM或GM(1,1)对每个分量进行预测。最后重构每个分量的预测值获得原始时间序列最终的预测结果。实例分析表明,该方法能较准确地预测机组振动参数演化趋势。  相似文献   

10.
针对三峡地区滑坡位移具有的"阶梯状"的问题,结合变分模态分解(VMD)、二次指数平滑(SES)、BP神经网络(BPNN),提出了一种新的滑坡位移时序预测模型:VMD-SES-BP预测模型.利用该模型对三峡白水河滑坡GPS监测位移数据进行变分模态分解得到趋势分量和其他子序列分量.选择二次指数平滑对趋势分量进行滚动预测,采...  相似文献   

11.
罗灿坤  刘昊  黄鑫  邵壮 《人民珠江》2023,(4):96-102
为了提高径流预测的精度,提出了一种用以解决径流预测等问题的组合预测模型,此模型由变分模态分解(VMD)、长短期记忆网络(LSTM)和自回归移动平均(ARMA)组成。为了降低入库流量的复杂度,利用VMD算法将径流数据分解为3个不同频率的模态分量。低频的模态分量继承了数据的时间特性,可以通过构建LSTM预测模型处理;而2个高频序列是平稳的时间序列,可以通过搭建ARMA预测模型处理。将3个子序列的预测结果进行叠加,最终得到径流的预测结果。采用湘江支流的东江水文站2020年的逐小时流量数据进行流量预测,对比试验和其他算法结果表明:所构建的模型可以有效提高水文预报的精度。  相似文献   

12.
采用基于自适应噪声的完全经验模态分解-长短期记忆神经网络模型(CEEMDAN?LSTM)对水深进行预测.首先利用中位值平均滤波法对数据进行预处理,再采用CEEMDAN方法对历史水深序列进行分解获得历史水深的高、低频以及残差序列,然后对得到的各个分量使用LSTM神经网络预测,最后叠加各分量预测值重构水深预测结果.以陶岔渠...  相似文献   

13.
针对光伏发电功率随机波动性导致预测难度大这一问题,采用改进的经验模态分解(CEEMD)对原始光伏发电功率数据进行分解,得到不同尺度的模态分量;然后引入麻雀搜索算法(SSA)对支持向量机(SVM)进行优化,建立不同尺度模态分量的预测模型;最后将各预测值叠加得到最终的光伏发电功率预测值。仿真结果表明,所提CEEMD-SSA-SVM光伏发电功率预测方法在保证原始光伏发电功率序列经CEEMD处理后具有较小重构误差的前提下,极大地提高了预测精准度。  相似文献   

14.
为提高大坝变形预测精度,针对大坝变形监测序列的非线性、非平稳性等特点,提出一种基于具有自适应噪声的完整集成经验模态分解(CEEMDAN)-相空间重构(PSR)-核极限学习机(KELM)的大坝变形预测模型。首先利用CEEMDAN算法将大坝变形监测序列分解成为若干不同频率的子序列,然后对各序列进行相空间重构,依据重构的各个子序列分别建立相应的KELM预测模型,最后对各子序列预测结果进行叠加求和得到最终预测结果。通过实例对比分析表明,该模型在大坝变形预测中预测精度较高,对于大坝变形安全监测具有一定的实用价值。  相似文献   

15.
针对大坝变形预测中非平稳非线性的数据处理问题,以及小波神经网络(WNN)在预测中无法实现自适应多分辨率分析的不足,提出一种基于经验模态分解(EMD)的小波神经网络预测模型(EMD-WNN)。利用经验模态法将变形时间序列分解成具有不同物理尺度特征的变形分量,以便降低其非平稳性;然后采用游程判定法对波动程度相似的分量重构为高、中和低频3个分量,并分别对其建立WNN模型;最后叠加各预测值即为最终预测结果。算例与多元回归模型、BP神经网络模型和WNN模型对比分析表明,该算法预测精度较高,可用于大坝变形预测。  相似文献   

16.
针对边坡变形中非平稳和非线性的数据处理问题,提出一种基于集合经验模态分解(EEMD)和BP神经网络相结合的边坡变形预测新算法(EEMD-BP)。该算法先对边坡变形序列进行EEMD分解,有效分离出隐含在时序中具有不同尺度特征的子序列,进而对各子序列建立BP神经网络预测模型,最后叠加各子序列预测值得到边坡变形最终预测结果。与GM(1,1)和BP神经网络模型对比分析表明,该算法预测精度较高,在边坡变形波动剧烈时段,也能保证较优的局部预测值和较好的全局预测精度。  相似文献   

17.
大坝变形监测数据序列具有非平稳、非线性特征,是水压、温度和时效综合作用的结果。引入集合经验模态分解(EEMD)方法处理变形数据,在得到多尺度大坝变形分量的基础上,对于其变化复杂的高频分量,采取长短期记忆神经网络(LSTM)以获得较优预测结果;对于周期性变化的低频分量,借助多元线性回归(MLR)实现快捷且有效的预测;最终通过分量重构,得到大坝变形的预测结果。工程实例分析表明:EEMD方法避免了模态混叠现象,可以得到更为合理的多尺度变形分量;LSTM和MLR分别对高、低频分量具有良好的预测能力。将分量叠加重构的最终结果分别与多种单一预测算法、基于EMD的组合算法以及传统模型等预测效果比较表明,基于EEMD-LSTM-MLR的组合预测模型的平均绝对误差(MAE)、平均绝对百分误差(MAPE)及均方根误差(RMSE)均低于上述对比模型,有着更高的预测精度,为大坝变形预测提供了新的思路。  相似文献   

18.
为了提高大坝变形预测模型精度和泛化能力,建立了一种基于卷积神经网络(Convolutional neural networks, CNN)与深度学习长短期记忆(Long short-term memory, LSTM)神经网络的组合预测模型CNN-LSTM。该模型先利用CNN提取大坝变形监测时间序列的特征,再利用LSTM生成特征描述,该模型精度高、泛化能力强。以柏叶口水库混凝土面板堆石坝为例,经过CNN-LSTM模型计算,将模型变形预测值与原型监测资料进行对比,再与LSTM模型及CNN模型的预测结果进行对比。结果表明,CNN-LSTM模型预测值最接近监测资料实测结果。  相似文献   

19.
滑坡变形在外部因素影响下易表现出随机性和非线性不易预测的特点,为此有必要提出更加有效的预测方法。利用集合经验模态分解(EEMD)滑坡位移原始时间序列,可得到多组复杂度差异明显的新位移变形子序列,然后针对各变形子序列的特点,分别建立变形子序列的GA-SVM预测模型,再将各子序列预测模型相叠加,最终构建出基于集合经验模态分解与遗传算法优化的支持向量机(EEMD-GA-SVM)滑坡变形预测模型。以恩施市香炉坝村滑坡为例,通过对比EEMD-GA-SVM和BPNN、SVM、GA-SVM各种边坡变形预测模型的预测精度,发现EEMD-GA-SVM模型精度更高且更为可靠,能够为滑坡安全监测提供有价值的参考。  相似文献   

20.
为提高径流预测精度,采用径向基神经网络(RBFNN)数据延拓技术处理完全集合经验模态分解(CEEMDAN)方法中的端点效应问题,并根据分解结果特点构建RBFNN-ARIMA组合预测模型。以1957—2013年黄河源区唐乃亥水文站年径流数据为例,先将选定的序列采用RBFNN进行延拓,然后进行CEEMDAN分解,对得到的分解分量运用RBFNN-ARIMA组合模型进行预测重构得到年径流量预测结果。研究表明,原始序列经过RBFNN数据延拓后再进行CEEMDAN分解,其所得分量可以有效反映不同时间尺度上的波动特征;ARIMA模型对高频IMF1分量的拟合效果较差,对其他中低频分量拟合效果较好;RBFNN-ARIMA组合模型预测结果的平均相对误差为5.23%,相较于RBFNN模型和ARIMA模型预测精度分别提高了9.88%和5.62%。因此,运用基于CEEMDAN方法的"分解-预测-重构"模式进行水文预测,对原始序列进行合理延拓并针对各分量特点进行组合预测可有效提高预测精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号