首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
当并网逆变器接入弱电网之时,电网阻抗的宽范围变化可能会导致系统不稳定。为此,通过在公共耦合点(PCC)处并联集中式有源阻尼装置,使其模拟阻尼电阻的外特性,可实现对并网逆变器和电网之间谐振的抑制。此处提出一种基于有源阻尼装置的虚拟电阻值自适应调节方法,既保证系统稳定性,又使有源阻尼装置中流过的电流尽可能小。同时,还提出一种对电流谐波基准的补偿方法,能够减小电流闭环对虚拟阻抗特性的影响,进一步改进阻尼效果。通过在实验室搭建一台5 kW的并网逆变器和一个1 kVA的有源阻尼装置,验证了所提控制方案的有效性。  相似文献   

2.
三相光伏并网逆变器电网高阻抗谐振抑制方法   总被引:1,自引:0,他引:1  
针对电网电压高阻抗LCL滤波器谐振问题,提出一种虚拟电阻+电容有源阻尼方法。该方法将虚拟电阻和电容串联之后与三相光伏并网逆变器的滤波电容并联。通过滤波电容电压得到虚拟电阻和电容支路的电流,将虚拟电阻和电容支路的电流作为LCL滤波器谐振抑制有源阻尼电流给定。通过逆变侧电流闭环控制,实现对三相光伏并网逆变器电网高阻抗LCL滤波器谐振抑制。建立15 k W的T型三电平三相光伏逆变器平台,对所提有源阻尼方法进行稳态实验,实验结果验证所提方法的可行性和正确性。  相似文献   

3.
为解决弱网阻抗变化时并网逆变器有源阻尼方法存在的阻尼失效问题,这里从考虑数字控制延时的有源阻尼阻抗特性出发,对弱网下有源阻尼失效的原因进行分析,提出了一种相位超前补偿的改进有源阻尼方法,减小数字控制延时对系统正阻尼区间的影响,拓宽了系统正阻尼区间,提高了谐振抑制效果,使并网逆变器在弱网下保持谐振阻尼的有效性和良好的稳定性。设计并搭建了一台LCL型中点箝位型(NPC)三电平并网逆变器实验样机,实验结果表明该方法可以拓宽系统正阻尼区间,使并网逆变器在不同的电网阻抗下能可靠稳定运行,提高其并网电流质量。  相似文献   

4.
并网电流反馈有源阻尼(grid-current-feedback-active-damping,GCFAD)策略可以在不增加额外传感器的前提下,有效抑制LCL型并网逆变器的谐振尖峰。在电网电压畸变的工况下,GCFAD策略往往与电网电压前馈策略同时使用以改善并网电流质量。然而,通过研究发现,传统GCFAD策略等效虚拟阻抗在中低频段的正阻特性会导致并网逆变器输出阻抗在中频段产生一定的相位滞后,从而降低了系统在电网电压畸变且附加电网电压前馈策略的情况下,对电网阻抗变化的鲁棒性。为了解决这一问题,提出了一种高鲁棒性并网电流反馈有源阻尼(high robustness grid-current-feedback-active-damping,HR-GCFAD)策略,使虚拟阻抗在高频处呈现正阻特性以抑制LCL谐振尖峰,增强了系统的稳定性;在中低频段呈现负阻特性以提高系统中频段输出阻抗相位,进而提高了系统在附加电网电压前馈策略时对电网阻抗变化的鲁棒性。理论分析和实验结果充分验证了所提策略的有效性。  相似文献   

5.
由于在地处偏远的分布式发电系统中,长距离的传输线以及大量变压装置的存在给电网带来一个不可忽略的等效阻抗,电网阻抗的引入会对并网系统的控制稳定性造成影响。论文对基于LCL滤波的并网逆变器控制系统进行小信号建模,以电感–电阻串联模型作为弱电网模型,研究了电网阻抗对并网逆变器控制系统稳定性的影响。论文针对无源阻尼和有源阻尼两种常用的谐振抑制方案进行了进一步分析,定量分析了不同阻尼方案下电网阻抗对控制系统的阻尼系数影响,并在此基础上提出一种弱电网工作条件下的混合阻尼控制方案;同时基于电网阻抗的在线测量实现技术,实时改变比例谐振(proportional resonant,PR)电流控制环与有源阻尼控制环的控制参数,形成基于混合阻尼的并网逆变器自适应控制策略,使得并网逆变器在各种电网阻抗条件下都可以保持稳定的控制特性。论文最后通过样机实验验证了文中所提出的并网逆变器阻抗自适应控制策略的有效性。  相似文献   

6.
由于电网阻抗的耦合作用,基于LCL滤波器并网的光伏逆变器之间会产生并联谐振。针对多逆变器并网的谐振问题,提出了一种基于多逆变器并网闭环控制模型的有源阻尼控制策略。基于多逆变器并网拓扑,依据戴维南等效定理建立了多逆变器并网的闭环数学模型,分析了多逆变器之间的谐振机理;采用电容电流反馈构成有源阻尼以抑制并网谐振,给出了基于滤波电容电流反馈的多逆变器并网闭环控制框图;依据谐振阻尼表达式研究了有源阻尼系数对并网系统的稳态及动态特性的影响。在三台10 k W并网逆变器上进行了无阻尼环并网控制算法与加入有源阻尼环控制算法的对比实验,实验结果表明了所提出的有源阻尼控制方法的有效性和可行性。  相似文献   

7.
LCL型并网逆变器采用电容电流反馈有源阻尼在弱电网下进行并网电流控制时,如果系统环路谐振频率高于1/6的采样频率,数字控制延时会导致并网逆变器在较宽范围变化的电网阻抗影响下鲁棒性较差甚至失稳。通过分析指出,电容电流反馈有源阻尼环路可等效为并联在滤波电容两端的虚拟阻抗Zeq(s),表现出的负阻特性是造成系统失稳的主要原因。鉴于此,提出一种采用负一阶惯性环节进行电容电流反馈有源阻尼的鲁棒性方法,在电容电流阻尼环路中引入惯性环节,利用频率稳定性分析对所提方法进行详细论述,并给出相关参数的设计过程。理论分析表明,该方法可保证Zeq(s)在LCL滤波器谐振频率有效范围内始终处于正阻特性范围,不仅提高系统的稳定裕度,并网系统的谐波谐振也得到抑制。此外,该方法具有较好的灵活性,当采用电容电压反馈有源阻尼控制并进行锁相时,可节省一组电流传感器的使用。最后,通过实验验证了所提方法的有效性。  相似文献   

8.
弱电网条件下,各逆变器之间以及逆变器与电网之间会形成交互耦合,从而影响到系统的稳定运行。针对该问题,提出了一种弱电网下多逆变器并网系统的全局谐振抑制策略。首先,基于并网电流反馈,提出改进的有源阻尼策略形成虚拟阻抗,来增加逆变器自身阻尼,从而抑制多逆变器并联谐振;其次,通过结合电网阻抗测量的改进电网电压前馈策略,抑制电网背景谐波电压通过电网阻抗产生的谐波谐振,从而提高多逆变器并网系统的稳定性。仿真和实验结果均验证了所提谐振抑制策略的有效性和可行性。  相似文献   

9.
陈博  曾成碧  苗虹 《电测与仪表》2023,60(2):132-137
在LCL型并网逆变器中,为了减少传感器的使用,并网电流反馈的闭环控制得到了广泛的应用。然而一方面LCL型并网逆变器自身存在谐振现象,从而限制了电流控制器的设计;另一方面,由于弱电网中电网阻抗的存在,使该控制性能下降,对系统稳定产生不利影响。针对上述问题进行改进:一是采用特定的并网电流反馈有源阻尼控制器来虚拟电网侧的串联阻抗,即基于有源阻尼的虚拟阻抗法来抑制谐波尖峰;二是采用相位超前补偿的方法,增大逆变器输出阻抗的相角,极大地减少不稳定区域。保证了当电网阻抗变化时,该系统仍具有较强的稳定性。最后在MATLAB/Simulink上进行仿真,验证了所提方法的有效性和可行性。  相似文献   

10.
考虑并网逆变器PWM调制的谐波源特性,针对多机并网逆变系统中LCL滤波器与电网阻抗耦合所引起的谐波增大甚至谐振的问题进行建模,分析其谐振机理.在逆变器电流环控制中引入电容电压反馈作为有源阻尼,使多机并网时逆变器输出电流满足并网条件.仿真对比加入有源阻尼前后多机并网的效果,证明所用的控制策略能削弱并网点电压和电流的谐振,改善并网环境.  相似文献   

11.
电容电流反馈有源阻尼广泛应用于LCL型并网逆变器中,可有效抑制系统的谐振尖峰。然而,在数字控制系统中,控制延时的存在会改变电容电流反馈有源阻尼的特性,使其等效在滤波电容两端的电阻的正负分界频率为fs/6,影响并网逆变器的稳定性和对电网阻抗的鲁棒性;同时,控制延时还会导致系统相位滞后,使得控制环路带宽受到限制。为此,提出一种兼顾有源阻尼特性和环路带宽的延时补偿方法,将有源阻尼等效电阻的正负分界频率扩大到0.43fs,大大提高系统的鲁棒性和动态性能。搭建一台3kW的单相LCL型并网逆变器样机,对比分析和实验结果验证了所提方法的有效性。  相似文献   

12.
有源阻尼器通过构造虚拟电阻提高接入弱电网中逆变器的稳定性,但虚拟电阻的准确性受开关频率限制,有源阻尼器的功能难以集成到常规的并网逆变器中,为此,提出一种虚拟电阻补偿控制方法。建立集成有源阻尼器功能的并网逆变器阻抗模型,分析虚拟电阻对提升系统稳定性的作用;阐明控制带宽和数字延时对虚拟电阻准确性的影响,针对并网逆变器易发生谐振稳定性问题的谐振频段,设计一种新的虚拟电阻补偿环节,显著提升了虚拟电阻的补偿精度。系统阻抗稳定性分析表明,所提方法虚拟出的阻抗具有良好的电阻特性。实验结果表明,集成有源阻尼器功能的并网逆变器接入系统后具有较好的阻尼谐振作用,显著提升了系统稳定性。  相似文献   

13.
针对电容电流反馈的有源阻尼用于抑制LCLLC并网逆变器控制系统的谐振尖峰时,数字控制系统存在的延时会导致系统失稳的问题,提出一种超前相位补偿方法。当电网阻抗变化时,LCLLC滤波器的谐振频率会靠近采样频率的1/6,有源阻尼不能有效抑制谐振,导致系统失稳,通过在电容电流反馈回路中设计串联超前相位补偿器,有效降低系统延时的影响,提高系统应对电网阻抗变化时的鲁棒性。通过搭建一台3 kVA的单相LCLLC并网逆变器样机,验证了所提方法的有效性。  相似文献   

14.
组串式LCL型三电平并网逆变器结构广泛用于光伏发电系统中,其高阶输出滤波器与非隔离特性极易引起逆变器输出电流谐振甚至导致系统不稳定.为抑制其输出电流谐振,首先根据组串式并网逆变器的结构和控制建立闭环控制模型;然后针对此结构和控制的特点提出了有源阻尼算法的基本方案,并派生出四种有源阻尼方案;再利用系统闭环零级点对四种方案进行比较得出抑制效果较好的方案,并对其电网阻抗适应性进行分析.最终,通过搭建20 kW实验平台,对该有源阻尼的谐振抑制效果和电网阻抗适应性进行了检验.  相似文献   

15.
随着新能源大规模接入电网,新能源并网逆变器在与电网交互引发的次/超同步振荡问题引起了广泛关注。此类振荡问题与并网逆变器的输出阻抗和电网阻抗特性密切相关。采用谐波线性化方法建立了三相LCL型并网逆变器的小信号输出阻抗模型,分析了不同电流控制策略对其输出阻抗的影响,通过阻抗比奈奎斯特判据分析了电网阻抗变化对系统稳定的影响。采用无源阻尼与有源阻尼相结合的方法抑制LCL滤波器的固有谐振尖峰,再根据公共耦合点电网阻抗的变化调节准比例谐振(quasi proportional resonance,QPR)控制器参数以及电容电流反馈系数,使系统阻尼基本保持不变,增强系统鲁棒性,确保系统稳定运行。时域仿真与数值分析结果证明了所提控制策略的有效性。  相似文献   

16.
以并网逆变器为功率接口的新能源发电系统在弱电网条件下易发生振荡失稳问题。该文将并网逆变器的控制回路可视化为电路元件组成的虚拟阻抗,基于该电路模型分析了弱电网条件下电流内环与锁相环交互作用导致并网逆变器振荡失稳的机理,在此基础上,提出了基于有源阻尼的稳定控制设计方法,并对不同有源阻尼控制的电路特性以及稳定性提升能力进行了对比分析。研究结果表明,针对锁相环引入负电阻造成的振荡失稳问题,阻抗-高通滤波器型有源阻尼控制策略具有更优的稳定性提升能力。最后通过PSCAD/EMTDC仿真和远宽StarSim控制器硬件在环实验对比了不同有源阻尼控制策略的振荡抑制效果,并验证了阻抗-高通滤波器型有源阻尼控制的动态性能。结果表明,所设计的稳定控制能够在200 ms内有效抑制系统振荡,并且可实现在短路比为1的极弱电网条件下稳定运行。  相似文献   

17.
该文提出一种弱电网下多逆变器并网系统的全局高频振荡抑制方法,通过引入公共耦合点(PCC)电压全局变量和并网电流高频分量到逆变器控制环节,可实现多逆变器系统的高频振荡抑制。首先,引入PCC电压的前馈构造出并联逆变器在PCC处的虚拟电阻,抑制逆变器谐波电压与电网背景谐波电压引起阻抗网络的谐波谐振;其次,引入并网电流高频分量反馈构造出并联在逆变器输出滤波电容两端的虚拟阻抗,增加逆变器自身阻尼,抑制多逆变器并联谐振。仿真和实验验证了所提高频振荡抑制方法的有效性。  相似文献   

18.
电网阻抗不断增加,其与并网逆变器阻抗频率交截处相角会越来越低,基于电容电流反馈有源阻尼法抑制谐振尖峰可能失效,容易发生低次谐波振荡,并网逆变器趋于不稳定。从阻抗法的角度,建立LCL型单相并网逆变器系统阻抗模型,提出电网电压前馈相角提升方法,提高电网阻抗与逆变器输出阻抗频率交截处的相角达到稳定裕度的要求,采用该方法能有效提高并网逆变器系统在阻抗变化下的稳定性。  相似文献   

19.
基于并网电流反馈的有源阻尼方法常用来抑制LCL型并网逆变器的谐振尖峰,现有方法会放大高频噪声、降低并网电流质量。因此提出了基于负低-高通滤波器的并网电流反馈新型有源阻尼方法,在抑制谐振尖峰的同时,也降低了对高频信号的增益,进一步提高并网电流质量。采用极点配置法,围绕系统的稳定裕度以及有源阻尼效果设计新型有源阻尼的参数;随后讨论了LCL参数和电网阻抗变化时新型有源阻尼控制系统的鲁棒性。仿真与实验结果证明,该方法使得控制系统对高频噪声有更好的抑制作用,在不同的工况下均具有良好的稳定裕度,在电网阻抗变化时下依然可以有效抑制谐波电流。  相似文献   

20.
并网逆变器的网侧电流控制是对逆变器的并网电流进行直接控制,其并网功率因数较高,但LCL滤波器固有的谐振属性容易引起系统的不稳定,通常需要引入阻尼对谐振进行抑制。现有的网侧电流控制方案能够在不增加传感器的情况下利用状态反馈实现有源阻尼,但在弱电网情况下,对电网阻抗的变化较为敏感,且抵抗电网扰动的能力较弱。为克服上述网侧电流控制的缺点,该文提出一种新型网侧电流控制策略。该新型策略以增加闭环控制自由度为思路,并以低成本有源补偿装置为手段,实现了逆变器输出阻抗超宽频率范围充分无源性的目标。最后通过2台逆变器并机的物理实验,验证了该新型网侧电流控制策略在不同电网工况下的强稳定性和抗扰性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号