首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以芦苇为湿地植物构建微生物燃料电池-人工湿地耦合系统(MFC-CW),研究进水COD、水力停留时间(HRT)及阴极曝气量对MFC-CW产电和污水净化性能的影响。结果表明:MFC-CW系统经驯化后能够稳定运行,在净化污水的同时产电。随着进水COD的增大,MFC-CW系统的输出电压及COD去除率均先增大后减小,在COD为200 mg/L时系统产电量最大,为294 m V;COD为300 mg/L时系统COD去除率最大,为89.4%。随着HRT的增大,系统输出电压先增大后减小,在HRT为3 d时达到最大,为280 m V;系统COD去除率先增大后趋于平稳,HRT为3 d时去除率最高,为86%。系统输出电压及COD去除率随阴极曝气量的增大而增大,但其增长的速率逐渐减小。选择最适阴极曝气量时需要综合考虑输出电压、污水净化效果及经济成本。综合考虑各因素,优选0.075 m~3/h为最佳曝气量。  相似文献   

2.
HRT和曝气量对AAO-BAF系统反硝化除磷性能的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
以COD/TN为4左右的生活污水为处理对象,通过调节系统进水流量和曝气生物滤池(BAF)曝气量,研究了水力停留时间(HRT)和BAF气水比对AAO-BAF反硝化除磷系统运行性能的影响。结果表明,气水比和水力负荷(HLR)对BAF的硝化性能有显著影响,BAF气水比为3:1时,NH4+去除率降低到了72%;当AAO的HRT为4 h,BAF的HLR为3 m3·m-2·h-1时,即使BAF的气水比达到8:1,也不能保证NH4+的完全去除。试验得出,AAO-BAF反硝化除磷系统的PO43-去除率与NH4+去除率存在良好的相关关系,为保证90%以上的磷去除率,NH4+去除率应该达到98%。当AAO的HRT≥6 h,BAF气水比≥4:1时,AAO-BAF系统对COD、NH4+、TN和PO43-的去除率分别可达87%、99%、80%和95%。  相似文献   

3.
牟春霞  王琳  王丽 《现代化工》2022,(6):106-111
利用人工湿地型微生物燃料电池(CW-MFC)处理六价铬[Cr(Ⅵ)]废水可实现同步产电。考察了不同电极间距下COD质量浓度、Cr(Ⅵ)质量浓度及水力停留时间(HRT)对处理含铬废水及同步产电的影响。结果表明,随着COD和Cr(Ⅵ)质量浓度的增大,CW-MFC的电压先增大后减小。电极间距越小,欧姆电阻越小,但当电极间距为10 cm时系统的输出电压和功率密度最大,同时COD和Cr(Ⅵ)的去除率最高。随着HRT的延长,产电性能和污水处理能力先增大后减小。电极间距为10 cm时,最大功率密度和COD最高去除率分别458.24 mW/m3和92.50%(HRT为2 d),Cr(Ⅵ)最高去除率为92.96%(HRT为3 d)。  相似文献   

4.
针对MBR工艺的改进和优化,构建了小试规模的折流式A2O-MBR工艺装置,将好氧池分为第一好氧池(O1)和第二好氧池(O2),考察了溶解氧(DO)和水力停留时间(HRT)对处理性能的影响。进水COD、NH4+-N和PO43--P分别为400 mg/L、50 mg/L和5 mg/L。在HRT分别为24 h和12 h条件下,COD、NH4+-N和TN的去除效果保持稳定,平均去除率为90.2%、99.4%、84.8%,平均出水分别为38.1 mg/L、0.3 mg/L和7.6 mg/L。除磷性能受好氧区DO影响较大,将O1池DO浓度从6 mg/L下降至3.5 mg/L,除磷效果明显改善,PO43--P去除率从45.0%提高至79.5%;在HRT缩短至12 h后,除磷效果保持稳定,出水平均浓度保持在1.0 mg/L。适当降低DO浓度、...  相似文献   

5.
采用厌氧/缺氧/好氧-曝气生物滤池(A2/O-BAF)工艺处理低C/N城市污水,研究硝化液回流比为0、50%、100%、150%和200%时该工艺脱氮除磷效能。结果表明,在A2/O中控制污泥龄(SRT)为15d,水力停留时间(HRT)为10h,好氧段溶解氧(DO)为2.0mg/L;BAF中控制HRT为3h、好氧/缺氧曝停时间比为50min∶10min以及硝化液回流比R=200%的条件下,进水COD、TN、NH4+-N和PO43--P的浓度分别为232.61mg/L、53.99mg/L、52.20mg/L和5.54mg/L,系统出水中COD、TN、NH4+-N和PO43--P的浓度分别为34.11mg/L、12.44mg/L、1.01mg/L和0.34mg/L,亚硝积累率(Ni AR)高达95.20%。出水NO2--N回流至A<...  相似文献   

6.
赵博玮  李建政  邓凯文  孟佳 《化工学报》2015,66(6):2248-2255
为处理高氨氮、低C/N比的养猪废水厌氧消化液, 构建了具有缓释碳源特性的木质框架土壤渗滤系统(WFSI), 并通过运行测试了进水浓度和表面水力负荷(SHL)对系统处理效能的影响。在SHL为0.2 m3·m-2·d-1条件下, 当进水COD和NH4+-N平均浓度分别从152和175.5 mg·L-1提高到421和788.7 mg·L-1时, 系统对COD的去除率从52.3%提高到61.2%, NH4+-N去除率从84.2%下降到61.5%, TN去除率从28.6%提高到了33.5%, NH4+-N和TN去除负荷分别达到了75.5和41.7 g·m-3·d-1。当SHL提高为0.32 m3·m-2·d-1时, 系统仍能维持运行, 但处理效能受到显著影响。在进水COD 和NH4+-N分别为265和465 mg·L-1左右时, COD、NH4+-N及TN的去除率分别平均为56.5%、53.3%和20.9%。木质填料及其附着层形成的NH4+-N浓度梯度, 可使系统承受较高的SHL的同时获得缓释碳源, 并保护氨氧化细菌免受自由氨毒性。  相似文献   

7.
为对农村分散生活污水进行资源化处理,以空心菜为湿地植物,在温度(32±2)℃、水力负荷2.40 m3/(m2·d)条件下进行湿地污水处理实验,评价了蔬菜型人工湿地对污水的处理性能及其资源化回收潜能。结果表明,当COD、TP、NH4+-N平均进水浓度分别为198.52、2.92、20.69 mg/L时,平均去除率分别为63.8%、64.0%、27.6%,将COD、TP、NH4+-N平均进水浓度降低为148.12、1.81、15.14 mg/L时,湿地去除效果明显提升,平均去除率分别为76.5%、73.0%、41.3%,平均出水浓度分别为34.83、0.49、8.89 mg/L,出水COD、TP、TN达到《城镇污水处理厂污染物排放标准》(GB 8918-2002)一级A标准,NH4+-N达到二级标准,实验期间空心菜生长状态良好,每株平均增重45.88 g,增长47 cm,具有较大的资源回收潜力。  相似文献   

8.
钨冶炼废水具有高盐度、低碳氮比等特点,对于生化处理是一个极大的挑战。本研究采用膜生物反应器(MBR)处理5%盐度钨冶炼废水,考察了不同运行条件(HRT、pH和DO)对处理效能的影响,并通过响应面分析法对反应器去除COD、NH4+-N和TN的效果进行优化分析。结果表明,反应器处理效果随HRT的增加而提高;pH对去除COD影响较小,NH4+-N和TN则相反,pH在8左右时,去除效果最优;DO在1 mg/L左右时,系统对污染物去除效能最好。对响应面结果进行实验验证后表明在HRT为21.7 h、pH为7.7~8.0、DO为1 mg/L时,MBR系统在5.0%盐度下对COD、NH4+-N和TN去除率可达91.24%、83.87%和75.26%。  相似文献   

9.
生物强化脱氮技术是城镇污水处理厂重点关注的技术之一,现有大量研究表明改性填料可以增强污水生物脱氮效果。制备了一种锰负载丝瓜络填料,构建以锰负载丝瓜络为生物载体的生物滤池系统,应用同步硝化反硝化(SND)技术处理模拟低碳氮比生活污水,考察反应器的启动及一系列C/N条件下系统脱氮性能的变化情况。结果表明,系统运行20 d后,实验组和对照组总氮去除率分别可达39.92%和60.07%左右,实现了SND的启动;且在反应器启动阶段,实验组COD、NH4+-N、TN平均去除率均高于对照组,分别提高了4.61%、20.09%、16.31%。在DO=(4.0±0.5)mg/L、HRT=12 h,进水C/N=5的条件下,实验组NH4+-N、TN平均去除率分别可达88.95%、64.98%,相较对照组分别提高9.72%、10.84%。可见锰负载物可提高污水处理中NH4+-N、TN以及COD的去除效果。  相似文献   

10.
微生物法处理空间站废水是未来空间站水回收管理系统的发展方向之一,为了探究生化法对空间站废水的处理效果,设计并搭建了一套MABR反应器,以出水COD、NH4+-N和TN等作为主要考察指标,并结合NO2--N、NO3--N等指标对反应器的处理效果进行评估和分析。试验对比了不同曝气压力、不同断面流速下反应器的处理效能,从而找出各因素对反应器处理效果的影响规律,然后在一定条件对空间站模拟废水进行处理。结果表明:反应器启动后具有同步硝化反硝化功能;当处理市政污水时,设定曝气压力为0.015 MPa,断面流速为2.5 mm/s,HRT为24 h,COD、NH4+-N和TN去除率分别达到99.9%、97.8%和86.69%;当处理空间站模拟废水(稀释10%)时,补充碳源150 mg/L(葡萄糖),曝气压力为0.02 MPa,断面流速为2.5 mm/s,HRT为24 h,COD、NH4+  相似文献   

11.
为探究进水氨氮(NH4+-N)对颗粒污泥生物除磷的影响,构建了序批式反应器(SBR),在中温条件下考察了进水NH4+-N对生物除磷颗粒污泥的特征及其污染物去除规律的影响。结果表明,进水NH4+-N质量浓度为40 mg/L时,颗粒污泥沉降性能最好、生物量最大,稳定运行期污泥体积指数(SVI)为52.9 m L/g,总悬浮固体(TSS)质量浓度达到5.7~5.9 g/L,显著高于其他组别。粒径分析表明,适当提高NH4+-N质量浓度利于颗粒污泥粒径增大,且当进水NH4+-N质量浓度为40 mg/L时,0.8~1.2 mm粒径占比升高至34.6%。进水NH4+-N能影响颗粒污泥胞外聚合物的质量分数及组分,当进水NH4+-N质量浓度为40 mg/L时,EPS质量分数可高达134 mg/g,而N...  相似文献   

12.
逯慧 《工业催化》2024,(3):86-92
采用电沉积合成法制备负载在镍泡沫(NF)上的双金属氧化物Fe3O4/CuO催化材料,将其应用于双室微生物燃料电池(MFC)的阴极,通过电化学去除废水中化学需氧量(COD)、氨氮(NH4+-N)和磷(P)污染物。通过电化学测试分析制备的Fe3O4/CuO-NF催化材料具有明显的氧化还原峰和更低的电荷转移电阻,表现出更高的催化活性。MFC系统运行期间最高输出电压达695 mV,最大输出功率密度达576 mW·m-2。实验结果显示,镍泡沫基双金属催化材料耦合微生物燃料电池系统对COD、NH4+-N和P具有高效的降解性能,去除率分别为92.15%、95.46%和97.77%。研究表明,采用Fe3O4/CuO-NF耦合MFC系统不仅具有良好的产电性能,在有机废水的处理中也表现优异,该方法更加经济、能耗低、效率高,应用前景广阔。  相似文献   

13.
水力停留时间对ABR系统处理红糖废水效果的影响   总被引:1,自引:0,他引:1  
本实验研究所构建的反应器分为5个格室,有效容积43.2 L,实验共进行43天。通过分阶段减少HRT的方式,研究其产氢及COD处理能力。ABR系统以红糖废水为原料,在温度为35℃,进水COD约5000 mg·L~(-1),HRT为8 h时产氢量最大,平均总产氢量可达到13.15 L·d~(-1);HRT为12 h时,COD去除率最大,平均总去除率可达到49.17%。产氢量最大时的HRT(8 h)与COD去除率最大时的HRT(12 h)不同。  相似文献   

14.
对ABR系统进行改良,建立新型的“活性污泥-生物膜”杂合厌氧折流板生物制氢反应器(SMHABR),研究其乙醇型发酵的形成及其产氢及COD处理能力。反应器分为5个格室,有效容积43.2 L,实验共进行180 d。系统以红糖废水为原料,在HRT为12 h,温度为(35±1)℃,通过分阶段提高进水COD的方式,可使ABR系统在35 d内培育驯化形成乙醇型发酵菌群体系。进水COD在约3500 mg·L-1时产氢量最大,总产氢量可达到44.75 L·d-1。进水COD浓度达到约7100 mg·L-1时COD去除率最大,平均总去除率可达到49.33%。COD去除率最大值并未与产氢量最大值同时出现,说明产氢最适进水浓度与COD去除最适进水浓度并非相同。  相似文献   

15.
采用装载不同类型填料的生化物化耦合强化生态浮床处理低碳氮比黑臭水体。构建了Fe-C微电解强化生态浮床(ICEFB)、海绵铁微电解强化生态浮床(SIEFB)、沸石强化生态浮床(ZEFB)和生态浮床(EFB)四组反应器,比较不同浮床系统的脱氮除磷效果,考察DO质量浓度和进水NH4+-N质量浓度对氮、磷等营养盐去除效果的影响。结果表明,铁微电解填料的引入显著提高了生态浮床的脱氮除磷能力,与ZEFB和EFB相比,SIEFB和ICEFB具有较高的养分去除效率。在DO为2 mg/L、进水NH4+-N质量浓度为30 mg/L时,SIEFB对NH4+-N的去除率和去除负荷分别为99.33%和62.96 g/(m3·d),TN的去除率和去除负荷分别为64.42%和56.78 g/(m3·d),TP的去除率和去除负荷分别为88.51%和10.73 g/(m3·d)。SIEFB的SND效率最高,为84.80%,具...  相似文献   

16.
ABR-MAP-MBR组合工艺处理高浓度养殖废水研究   总被引:2,自引:0,他引:2  
针对养殖废水高悬浮物、高有机物及高氨氮的特点,采用厌氧折流板反应器/磷酸铵镁沉淀/兼氧-好氧膜生物反应器(ABR-MAP-MBR)组合新工艺对其进行中试处理研究,考察生物反应器的启动运行条件;考察水力停留时间(HRT)、水温和溶解氧(DO)等运行参数对养殖场废水各阶段处理效果的影响;考察MAP沉淀法对ABR厌氧出水的NH4-N去除效果。结果表明:采用阶梯负荷启动策略,60 d完成ABR反应器的启动,厌氧环节在HRT为24 h、水温25~35℃时COD去除率达73.5%;磷酸铵镁沉淀过程中选择氯化镁、磷酸三钠作为沉淀剂,控制Mg2+∶NH4+∶PO43-摩尔比为1.2∶1∶0.95,pH为8.5~9.0条件下处理ABR厌氧出水,COD、NH4-N和PO43--P去除率分别为28.2%、85.4%和89.7%;通过对A/O-MBR反应器HRT和DO的条件优化,该单元的COD、SS、NH4-N和TN等指标的去除率分别为82.0%、95.2%、72.4%和67.7%(HRT=16 h,O区DO≥3.0 mg·L-1)。经过组合工艺的综合处理,系统出水各项主要指标(SS、COD、TN和TP等)达到《畜禽养殖业污染物排放标准》(GB 18596-2001)一级排放标准,表明该新工艺在规模化养殖场废水处理中具有良好的应用前景。  相似文献   

17.
生物转鼓反应器氧转移特性及运行效能   总被引:1,自引:1,他引:0       下载免费PDF全文
李宁  苗志加  李再兴  王忠东  秦学  黄娟 《化工学报》2015,66(7):2678-2685
采用一种研制的新型生物转鼓反应器(RDBC),内部装填MBBR悬浮填料,通过调节浸没深度和转速可实现厌氧、缺氧、好氧等工况条件下运行,其氧总体积传质系数KLa可达25.87 h-1,动力效率可达228.62g·(kW·h)-1。利用生物转鼓分段进水后置反硝化工艺处理模拟生活污水,结果表明:在进水流量6 L·h-1(HRT 18 h),好氧生物转鼓反应器浸没高度比2/3、转速8 r·min-1、DO 3.0 mg·L-1,缺氧生物转鼓反应器浸没高度比5/6、转速4 r·min-1、DO 1.0 mg·L-1,进水流量分配比3:1,进水COD、NH4+-N和TN浓度平均值分别为385.0、38.0和38.0 mg·L-1时,COD、NH4+-N和TN去除率分别达到90.4%、93.7%和80.9%,出水水质可满足我国《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级A排放标准要求。  相似文献   

18.
为探究不同盐度对悬浮填料式SBR工艺处理性能以及悬浮填料上附着微生物群落结构的影响,在进水盐度为0、5、10、15 g/L的4个梯度下,对SBR1(对照组,不添加填料)和SBR2(添加30%有效容积的悬浮填料式SBR工艺)2组工艺的COD和NH4+-N去除性能进行研究,并采用16S rRNA高通量测序技术分析了悬浮填料中微生物的群落特征。实验结果表明:当盐度从0增加至15 g/L时,SBR1系统COD和NH4+-N平均去除率分别从92.6%、92.5%降至64.7%、68.2%,SBR2则是从96.0%、94.2%降至67.8%、73.8%,2个系统COD、NH4+-N的平均去除率均受到盐度影响而下降,且相比于COD,系统对NH4+-N的降解效果更好,此外,SBR2系统对COD、NH4+-N的去除效果始终强于SBR1系统;悬浮填料上附着微生物中主要优势门为变形菌门和拟杆...  相似文献   

19.
采用“IC反应器+同步硝化反硝化+气浮”处理中药制药生产废水,处理水量为1 270 m3/d。经过190 d的稳定运行,厌氧单元的进水COD平均浓度为12 883 mg/L,出水COD平均浓度为2 577 mg/L,平均COD去除率为80%。同步硝化反硝化单元的平均进水TN、NH3-N分别为266、191 mg/L,平均出水COD、TN、NH3-N分别为567、39.9、7.64 mg/L,COD、TN、NH3-N平均去除率分别为78%、96%、85%,出水经过混凝气浮处理,气浮单元出水COD、NH3-N、TN的平均浓度分别为340、7.26、31.9 mg/L,出水可以稳定满足GB/T 31962—2015《污水排入城镇下水道水质标准》A级标准。  相似文献   

20.
以生物炭作为基质填料构建垂直流人工湿地,探讨不同进水C/N和曝气量条件下,人工湿地处理农村生活污水的净化效果。结果表明:进水C/N减小会导致湿地出水NH4+-N、TN和TP浓度显著升高;曝气量从0.2 L/min提高至0.6 L/min时,湿地对COD、NH4+-N和TN的去除率增加,但是继续提高曝气量,出水TP浓度明显增大;间歇微曝气-改性生物炭添加的湿地系统对COD、NH4+-N、TN和TP的平均去除率分别为85.09%、99.15%、99.41%和91.40%,出水水质达到《城镇污水处理厂排放标准》(GB18918-2002)一级B标及以上。以生物炭为人工湿地基质填料可提高农村生活污水的处理效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号