首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
卤化镧系LnX3(Ce)闪烁晶体的研究进展   总被引:2,自引:0,他引:2  
卤化镧系LnX3(Ce)(Ln=La、Lu、Gd;X=Cl、Br、I)闪烁晶体由于其高发光效率、快衰减和高的能量分辨率等优异性能而在医学成像技术-单光子发射计算机层析扫描(SPECT)和正电子发射层析扫描(PET)中存在巨大的应用前景.本文概述了近年来LnX3(Ce) 晶体的研究进展.从原料制备出发,介绍了它们的晶体生长方法与结构,基本的物理、化学性质,主要闪烁性能、发光机制及其它掺杂效应研究等.最后,对它们未来的研究发展方向和其他应用前景作了展望.  相似文献   

2.
卤化镧系LnX3(Ce)(Ln=La、Lu、Gd;X=Cl、Br、I)闪烁晶体由于其高发光效率、快衰减和高的能量分辨率等优异性能而在医学成像技术-单光子发射计算饥层析扫描(SFECT)和正电子发射层析扫描(PET)中存在巨大的应用前景.本文概述了近年来LnX3(Ce)晶体的研究进展.从原料制备出发,介绍了它们的晶体生长方法与结构,基本的物理、化学性质,主要闪烁性能、发光机制及其它掺杂效应研究等.最后,对它们未来的研究发展方向和其他应用前景作了展望.  相似文献   

3.
x射线激发Ce3+掺杂硼酸盐玻璃的闪烁发光   总被引:1,自引:0,他引:1  
《功能材料》2000,31(Z1):103-105
实验研究了Ce3+掺杂64B2O3-36BaO,75B2O3-25La2O3玻璃的闪烁发光。在80kV加速电压、阴极电流为5mA的高能X射线激发下闪烁光强为同样条件下闪烁晶体Nal(Tl)的3%~4%。对影响闪烁光输出的因素进行了分析。结果表明,Ce3+的自吸收和Ce4+离子的荷移吸收是降低闪烁光输出的主要因素;含镧硼硅酸盐玻璃系统可作为发展高密度玻璃有希望的系统;闪烁玻璃的制备技术对提高闪烁光输出起着重要作用。  相似文献   

4.
实验研究了Ce3+掺杂 6 4B2 O3- 36BaO ,75B2 O3-2 5La2 O3玻璃的闪烁发光。在 80kV加速电压、阴极电流为 5mA的高能X射线激发下闪烁光强为同样条件下闪烁晶体NaI(Tl)的 3%~ 4 %。对影响闪烁光输出的因素进行了分析。结果表明 ,Ce3+的自吸收和Ce4+离子的荷移吸收是降低闪烁光输出的主要因素 ;含镧硼硅酸盐玻璃系统可作为发展高密度玻璃有希望的系统 ;闪烁玻璃的制备技术对提高闪烁光输出起着重要作用。  相似文献   

5.
新型闪烁晶体Gd3(Al,Ga)5O12:Ce(简写为GAGG:Ce)在制备过程中易出现多晶扭曲生长、组分偏析等问题,严重影响晶体的性能.为了得到大尺寸高质量的GAGG:Ce晶体,采用X射线衍射(XRD)、电感耦合等离子体发射光谱(ICP-OES)和X射线激发发射谱(XEL)等手段,结合熔体特性分析了GAGG:Ce晶体...  相似文献   

6.
通过区熔法获得了铈掺杂焦硅酸钇闪烁单晶(Y_2Si_2O_7:Ce~(3+),简写为YPS),并对其闪烁与热释光性能进行了研究.对YPS:Ce闪烁晶体的透过、光输出和光衰减等光学和闪烁性能进行了表征,并对其综合性能进行了评价.其衰减时间为30.16ns,为目前铈掺杂焦硅酸盐闪烁晶体中最快的.并采用热释光测试技术,对YPS:Ce晶体中的缺陷进行了研究,发现在300~500K温度区间内一共有三个热释光峰,分别对应于三个缺陷,通过对二维(温度-光强)的拟合,确定了这三种缺陷的陷阱深度、振动频率等物理参数.并结合三维(温度-波长-光强)热释光谱,提出了YPS:Ce的热释光模型.  相似文献   

7.
闪烁晶体材料的研究进展   总被引:1,自引:0,他引:1  
闪烁晶体用于X射线和γ射线等高能粒子探测,在分子医学成像、高能物理、核物理、安全检查、材料无损探伤和地质探矿等领域有着广泛的应用。随着人们对闪烁晶体的更加深入的认识以及晶体生长技术的发展,许多已开发的闪烁晶体的性能得到优化和提高,应用范围也随之扩大,随着应用的更高要求,对闪烁晶体的综合性能要求越来越高,进一步设计、发现、开发和生长具有高密度、优良光学均匀性、高能束粒子阻止本领、高光产额、快衰减、高稳定性、低成本等综合优良性能的闪烁晶体仍然是闪烁材料研究的重点。简要综述了近年来卤化物、钨酸盐、锗(硅)酸盐、铝酸盐和硼(磷)酸盐等重要闪烁晶体材料的研究进展及其闪烁性能和应用前景。  相似文献   

8.
新型闪烁晶体Ln2SiO5的研究进展   总被引:1,自引:0,他引:1  
作为新型无机闪烁晶体材料,稀土硅酸盐系列晶体Ln2SiO5(Ln-Gd3+,Y3+,Lu3+)近年来受到广泛关注.本文综述了Ln2SiO5系列晶体的结构,Ce3+荧光机制及晶体生长研究的进展,总结了它们的闪烁性能,应用和有待深入研究的问题.  相似文献   

9.
总结了不同离子掺杂YAG晶体的生长、闪烁特性和Ce∶YAG晶体的发光机理。Yb∶YAG晶体具有非常短的衰减时间(0.98ns),但光产额只有约1190phot/MeV。Ce∶YAG晶体的衰减时间为88ns,光产额可达26000phot/MeV,它具有优良的综合性能,已应用于闪烁探测器和大规模集成电路检测。Gd或Gd/Ga等稀土离子与Ce共掺可进一步提高YAG晶体的闪烁性能,最高光产额达44000phot/MeV,衰减时间为56.9ns。  相似文献   

10.
双读出量能器是一种全新设计的高能粒子探测装置, 它能同时测量到Cherenkov光和闪烁光, 因而能更全面地获得高能粒子的信息。目前, 双读出量能器主要有三种设计方式: (1)采用石英纤维产生Cherenkov光, 塑料闪烁纤维生成闪烁光; (2)分别以未掺杂的晶体纤维作为Cherenkov辐射体、Ce掺杂的同种晶体纤维作为闪烁体; (3)采用同种闪烁晶体有效分离Cherenkov光和闪烁光。第三种设计可以消除取样涨落、提高量能器的分辨率, 因而备受关注。本文基于第三种设计方式探讨了钨酸铅(PbWO4)、锗酸铋(Bi4Ge3O12)、硅酸铋(Bi4Si3O12)和镥铝石榴石(Lu3Al5O12)四种。闪烁晶体在双读出量能器方面的研究进展和可能的应用。Pr掺杂PWO晶体以及硅酸铋晶体都有可能用于双读出量能器, 而后者由于吸收边比锗酸铋更短, 更易于分离Cherenkov光和闪烁光, 在双读出量能器应用方面显示出明显的优势。稀土离子掺杂有望进一步提高硅酸铋晶体的性能, 开发出更适合双读出应用的闪烁材料。  相似文献   

11.
为了提高中子探测效率, 以富集10B的H310BO3为原料, 通过提拉法生长了富集10B的Ce:Li6Lu(10BO3)3晶体。X射线激发发射光谱测试表明: 其发光峰位于360~480 nm, 属于Ce3+离子典型的5d - 4f跃迁发光, 其闪烁发光效率为BGO晶体的3.9倍。在350 nm紫外光和137Cs所发出的662 keV的γ射线激发下测得的衰减时间分别为21.0 ns 和31.7 ns, 在137Cs辐射源激发下所测得的相对光输出是CsI(Tl)晶体的20%, 能量分辨率为9.7%。在慢化252Cf中子源激发下可以观测到明显的中子全能峰, 其能量分辨率为33%。上述研究结果表明, Ce:Li6Lu(10BO3)3晶体具有较高的闪烁效率、快的衰减时间和良好的中子探测效率, 是一种具有应用前景的中子探测用闪烁晶体。  相似文献   

12.
采用固相烧结法制备了(Gd_(1-x)Y_x)_2Si_2O_7:0.1%Ce(x=0.1,0.2,...0.7,1)的系列多晶样品,通过荧光激发发射光谱和X射线激发发射谱对该系列样品进行筛选,发现(Gd_(0.5)Y_(0.5))_2Si_2O_7:0.1%Ce的组分发光效率最高。采用浮区法生长了该组分单晶,并对该单晶的结构、荧光和闪烁性能进行了测试和讨论。XRD结果表明,(Gd_(0.5)Y_(0.5))_2Si_2O_7:0.1%Ce闪烁单晶为正交结构,紫外激发-发射谱、荧光衰减谱显示该晶体的发光主峰位位于362 nm,但由于Gd(~6I_J)→Ce(5d_3)的无辐射能量传递的存在,使样品出现211 ns的荧光慢分量。采用X射线激发发射谱,γ射线激发多道能谱和闪烁衰减谱对样品的闪烁性能进行了表征。结果表明,GYPS:Ce晶体的光产额为Ce掺杂硅酸钇镥标样的90%,由于该无辐射能量传递和较低的Ce掺杂浓度,单晶闪烁发光中存在较长的慢分量,闪烁衰减慢分量成分占到总发光的87%。  相似文献   

13.
中子探测技术广泛用于国土安全、核材料安全检测以及高能物理等领域,由于3He资源紧缺,近年来急需开发出能够同时甄别中子/伽马的新型闪烁晶体, Cs2La Li Br6:Ce(CLLB:Ce)晶体具有良好的中子/伽马甄别能力、优异的能量分辨率以及高的光输出,但其中子/伽马甄别性能有待进一步提高。本研究采用垂直布里奇曼法成功生长了Zr4+共掺杂的CLLB:Ce晶体。通过不同表征手段研究了Zr4+共掺杂CLLB:Ce晶体的结构和组分,结果表明Zr4+成功掺入基质材料且对基质晶体结构不产生明显的影响,Zr4+共掺杂后没有产生新的发光中心,紫外衰减时间约为27.0 ns,仍具有较快的荧光衰减。Zr4+共掺杂CLLB:Ce晶体的品质因子(Figure of Merit, FOM)从1.2提高到1.5,表明其中子/伽马甄别能力得到改善。结合热稳定性和闪烁衰减时间,探讨了衰减时间对FOM的影响机制,Zr4+共掺杂可以抑制浅电子陷阱...  相似文献   

14.
感应熔炼制备La0.8-xCexMg0.2 Ni 3.8(x=0,0.1,0.3,0.5),研究Ce替代部分La对La4MgNi19超晶格负极材料相结构及电化学性能的影响。研究表明,La4MgNi19合金相由LaNi5,(La,Mg)2Ni7,(La,Mg)5Ni19(3R-Ce5Co19)相组成。加入Ce后,(La,Mg)2Ni7相消失,出现2H-Pr 5Co 19结构的(La,Mg)5Ni19相,同时随着Ce替代量的增多,(La,Mg)5Ni19相含量增多,LaNi5相随之减少,Ce加入有利于形成A5B19相,特别是形成2H-Pr5Co19结构。电化学放电容量随着x值的增加呈现先增后减趋势,x=0.1时样品的电化学放电容量380.36 mAh/g最佳。合金电极活化次数、容量保持率和倍率放电性能随着Ce含量增加而增大。H在合金中的扩散速率是影响其倍率放电性能主要因素。  相似文献   

15.
闪烁体能够快速地将光子如X射线、γ射线或高能粒子如α粒子、β粒子转换成紫外-可见脉冲荧光,因此在过去的几十年中备受学术界和产业界关注,目前已经在核医学成像、安全检查、工业探测、高能物理等领域广泛应用。由于稀土离子如Ce~(3+)、Pr~(3+)和Eu~(2+)等具有5d-4f快偶极允许跃迁,所形成激子衰减时间一般在几十至几百纳秒之间,具有快闪烁响应特性,通常作为发光中心掺杂入不发光的基质中形成闪烁晶体。主要介绍了近几十年来无机闪烁晶体主要包括卤化物、铝酸盐和硅酸盐三类在学术界和产业界中的研究进展。  相似文献   

16.
闪烁体能够快速地将光子如X射线、γ射线或高能粒子如α粒子、β粒子转换成紫外-可见脉冲荧光,因此在过去的几十年中备受学术界和产业界关注,目前已经在核医学成像、安全检查、工业探测、高能物理等领域广泛应用。由于稀土离子如Ce~(3+)、Pr~(3+)和Eu~(2+)等具有5d-4f快偶极允许跃迁,所形成激子衰减时间一般在几十至几百纳秒之间,具有快闪烁响应特性,通常作为发光中心掺杂入不发光的基质中形成闪烁晶体。主要介绍了近几十年来无机闪烁晶体主要包括卤化物、铝酸盐和硅酸盐三类在学术界和产业界中的研究进展。  相似文献   

17.
采用扫描电镜(SEM)、X射线衍射(XRD)、能谱分析(EDS)研究添加(La,Ce)混合稀土前后AZ91镁合金在融雪剂溶液中经历干/湿交替循环腐蚀后腐蚀产物的组成和结构。结果表明:未添加(La,Ce)混合稀土的AZ91镁合金的腐蚀产物主要由Mg(OH)_2,MgO,CaCO_3及Mg_6Al_2CO_3(OH)_(16)·4H_2O组成;而添加混合稀土的AZ91镁合金表面生成了(La,Ce)AlO_3等含稀土元素的腐蚀产物,同时腐蚀产物出现致密层。不同周期干/湿交替循环腐蚀的电化学阻抗谱(EIS)测试结果表明,添加(La,Ce)混合稀土的镁合金在相同腐蚀周期的阻抗谱幅值均高于AZ91镁合金的阻抗谱幅值,稀土的添加有助于降低阻抗谱的弥散效应,表明(La,Ce)混合稀土可以提高AZ91镁合金在干/湿交替腐蚀环境中的耐蚀性和腐蚀产物膜的稳定性。  相似文献   

18.
由于高能物理实验、核医学成像、安全检查和地质探矿等领域的迫切需要,具有高密度、快衰减、高光输出和低成本等优良特性的闪烁晶体成为关注的焦点,特别是Ce~(3+)激活的镥(Lu)基化合物,其开发、研究和应用方兴未艾。简要综述了硅酸镥、氧化镥和铝酸镥等闪烁晶体的生长技术、闪烁性能和应用,并展望了镥基闪烁晶体的发展趋势。  相似文献   

19.
掺铈硅酸镥(Lu2SiO5:Ce)晶体的生长与闪烁性能   总被引:2,自引:0,他引:2  
用Czochralsky方法和铱坩埚感应加热技术生长出了尺寸为φ35mm×40mm的掺铈硅酸镥(LSO:Ce)闪烁晶体.透射光谱表明,由于铈离子的掺入,使晶体的吸收边由纯LSO晶体的195nm红移至380nm.LSO:Ce晶体的紫外激发波长按强度递减的顺序依次为380、333、319和216nm,其光发射为带状谱,波长覆盖范围从390nm至560nm.X射线激发的发射谱具有典型的双峰特征,峰值波长为393nm和.426nm.这些特征与Ce3+离子基态能级4f1因自旋-轨道耦合而产生的两个分裂能级和Ce+离子在LSO晶体中占据两个不同的结晶学格位有关.  相似文献   

20.
正近期,中国科学院上海光学精密机械研究所中科院强激光材料重点实验室利用提拉法生长出的高品质Ce∶YAG闪烁晶体开展了高分辨率X射线成像系统核心器件——闪烁体研制工作,成功制备了尺寸为30 mm,厚度为30~45μm的高品质闪烁晶体元件,并和中科院上海应用物理研究所合作,研制基于超薄Ce∶YAG闪烁晶体的高分辨X光探测器,实现X光辐照条件下高分辨成像。在同等实验条件下,与Crytur公司同类晶体对比,上海光机所研制的  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号