首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
GH4169高温合金薄壁钻孔与常规的高温合金厚壁钻孔相比有其特殊性,应用有限元分析软件对硬质合金钻头钻削镍基高温合金平板薄壁件的动态过程进行建模,总结钻削过程中钻削力的变化特点以及进给量和钻削速度对钻削力的影响。研究结果表明:当钻尖高度大于薄壁件厚度时,根据钻头与薄壁件的相对位置,可将钻削过程分为三个阶段,在不同阶段钻削力变化特点不同;轴向力和扭矩随着钻削速度的增加而增加,但轴向力增加幅度不大;轴向力和扭矩均随着进给量的增大而明显增大;进给量对钻削力和扭矩的影响较钻削速度明显。  相似文献   

2.
GH4169是常用的高温合金之一,钻削加工较为困难。为了深入研究GH4169钻削加工过程中的钻削轴向力和扭矩的变化特性,通过设计正交试验的方法,研究了钻削GH4169高温合金时主要钻削参数对钻削力的影响,并利用正交试验的极差分析法确定各切削参数对钻削轴向力和扭矩影响的主次因素顺序,最后利用Matlab软件多元线性回归分析进行公式修正。结果表明:钻削轴向力和扭矩随刀具转速的增加而减小,随每转进给量和直径的增加而增加,而直径的增加对轴向力和扭矩的影响比进给量大。  相似文献   

3.
三区段振动钻削动态轴向力和扭矩的计算机仿真   总被引:1,自引:0,他引:1  
根据斜角切削理论,假设将钻头主切削刃和横刃上的变形过程分别处理为一系列微小的具有动态特性的振动切削单元,从而构造出三区段振动钻削动态轴向力和扭矩的预报模型,并根据该模型对三区段动态轴向力和扭矩进行了计算机仿真。  相似文献   

4.
钛合金旋转超声辅助钻削的钻削力和切屑研究   总被引:1,自引:0,他引:1  
针对难加工材料钛合金在采用普通麻花钻传统钻削过程中存在钻削力和扭矩较大使得钻孔困难,刀具使用寿命低,连续长切屑易缠绕刀具、划伤孔加工表面、增大刀具-切屑-工件孔壁之间的摩擦以及排屑差引起堵屑和卡刀具的问题,引入一种新刃型刀具(即八面钻),并结合超声振动钻削技术,进行了钛合金旋转超声辅助钻削试验。分析了旋转超声辅助钻削和普通钻削中切屑形成原理,采用文中所设计的旋转超声振动钻削主轴结合BV100立式加工中心平台、测力系统和非接触激光测量系统进行了无冷却条件下基于八面钻的钛合金旋转超声辅助钻削和普通钻削试验以及钻削力、扭矩和切屑形态的研究。试验结果表明:相比于普通钻削,超声钻削明显降低钻削力和扭矩分别为19.07%~20.09%和31.66%~34.3%,明显增强了钻头横刃和主切削刃的切削能力,获得了良好的断屑和排屑效果,提高了切削过程的稳定性,能够极大改善钛合金钻孔过程钻削困难、刀具使用寿命低和孔加工质量差的问题。  相似文献   

5.
李辉  高峰  李艳 《机械强度》2023,(1):76-83
通过硬质合金钻头YG10在常规干钻削、气冷、低温二氧化碳(LCO2)冷却三种绿色切削条件下钻削镍基高温合金GH4169,研究镍基高温合金的钻削性能和钻头磨损机理,旨在提高钻头加工寿命。通过分析不同切削条件下的钻头寿命、钻削力、钻削温度、钻头磨损形貌和加工表面粗糙度,结果表明,气冷与LCO2冷却均能改善切削工况,降低钻削力和钻削温度,并延长钻头寿命。气冷切削和LCO2冷却可使钻头寿命比常规干钻削分别延长33%和2.33倍。硬质合金钻头钻削镍基高温合金时对工况要求较高,不适宜工况的主要失效形式是崩刃甚至断刃,在工况适宜时的主要失效形式是黏结磨损。  相似文献   

6.
针对叠层复合材料的微小孔加工,提出阶跃式多元变参数振动钻模型。按照双刃针斜角切削理论和单刃正交切削理论,分别把钻头主切削刃和副刃分解成一系列微小双刃动态斜角切削单元,把横刃分解成一系列微小单刃动态正交切削单元,从而建立了振动钻削叠层复合材料7个区段的动态轴向力和扭矩的理论公式,并以入钻定位误差,孔扩量,出口毛刺高度作为钻削过程质量评价指标进行了试验优化分析,结果表明,阶跃式多元变参数振动钻削显著提高了叠层复合材料的微小孔加工精度。  相似文献   

7.
设计了一种调幅式轴向低频振动刀柄,分析了振动刀柄的整体结构布局及其工作原理.采用机床主轴旋转运动作为动力输入,带动正弦曲面旋转以实现振幅输出,基于两组正弦曲面相位差实现刀柄振幅调节.基于GH4169高温合金材料,运用ABAQUS有限元软件进行了三维钻削仿真试验,对比分析了GH4169高温合金在普通钻削和轴向低频振动钻削下轴向力和钻削扭矩之间的差异.结果 表明:GH4169高温合金轴向低频振动钻削可以降低最大轴向力约46%,降低最大钻削扭矩约73%,可显著改善钻削条件,提高孔加工质量.  相似文献   

8.
基于ABAQUS有限元仿真软件建立体积分数为56%的SiC_p/Al复合材料钻削三维模型,研究分析了在两种不同工件约束方式下钻削加工薄壁件过程中工件的变形规律及特点,同时研究了切削参数对薄壁钻孔时工件变形量的影响规律。结果表明:随着钻削速度和进给量的增加,钻孔中心位置处(钻头横刃钻削至工件下表面)的最大变形量随之增加,进给量对钻孔件中心位置处最大变形量的影响较为显著;薄壁件残余变形量随着进给量的增大而增加,钻削速度对薄壁件残余变形量的影响较小。  相似文献   

9.
白小帆  刘志强  刘彦士 《中国机械工程》2023,(20):2411-2418+2427
为了研究轴向低频振动辅助钻削方式在皮质骨钻削过程中对进给力的影响,对全钻头和横刃部分进给力进行了对比试验,并对切削刃切削单元的运动学和瞬时加工过程进行了分析。对比试验结果表明:在相同的钻削参数下,与常规方式相比,轴向低频振动钻削方式的全钻头进给力最大可减小约60%,横刃部分进给力可减小60%~80%。依据运动学分析和典型骨屑形态对比可以得出:在特定的钻削参数和振动参数配合下,轴向低频振动钻削方式可以实现钻头-工件周期性分离运动,显著影响瞬态加工过程,是进给力显著减小的主要原因之一。  相似文献   

10.
通过对TC4钛板上钻削?0.1mm微孔的研究,建立了一种能够精确预测钻头所受钻削力的切削力模型。利用解析法分别将主切削刃和横刃离散成一系列斜角切削单元和直角切削单元;应用Deform软件,并充分考虑微细加工中特有的尺寸效应,模拟出每个单元所受的力;建立切削单元的局部坐标系与整个钻头的整体坐标系,将每个切削单元所受的力转化为整个钻头所受的力,进而求出整个钻头的轴向力与扭矩。通过多组工艺参数的仿真与实验,表明该切削力模型能够比较精确地测出微钻削过程中的钻削力。  相似文献   

11.
针对碳纤维复合材料(CFRP)与钛合金夹层结构制孔过程中加工质量、制孔效率与钻头寿命低等问题,以钻头的横刃结构为主要研究对象设计试验方案,对钻头横刃结构进行优化,以提高加工质量、制孔效率与钻头寿命。结果表明:优化后的横刃结构加工性能优于普通"X"形钻头横刃结构,不论是碳纤维复合材料部位还是钛合金部位轴向切削力明显减小。  相似文献   

12.
微细钻头用于加工铝合金上直径小于0.1 mm、深径比10的小孔,钻头的主要破坏形式为根部折断和端部崩刃。针对刃具根部折断,本文分析了钻孔偏心及交变载荷产生的机理,使用Ansys仿真钻头偏心与抗弯强度关系,取钻头使用安全系数3~5时,计算得出钻头允许偏心位移4.47~8.16μm。三维钻削与二维切削转化力学模型分析表明,刃口端部为切削受力强度薄弱点,要满足安全系数3~5,则每转进给量要小于0.155μm。切削试验表明,采用主轴转速25 000 r/min、进给量0.5 mm/min,可实现0.05 mm硬质合金钻头连续加工30个深径比为10的微孔,孔径尺寸精度±5μm。  相似文献   

13.
基于硬铝和不锈钢的振动钻削试验,对振动钻削中的麻花钻的失效形式及其产生原因进行了研究,并与普通钻削中的失效形态进行了对比分析.研究结果表明:与普通钻削相比,在合理的振动参数下,振动钻削时麻花钻的前后刀面磨损现象明显减弱,且更均匀化,横刃和外缘点磨损很少发生;钻头出现折断、主刃的崩刃和剥落等破损的几率也大大减小,但是若振幅过大,易出现横刃处的崩刃现象.#  相似文献   

14.
斜孔钻削大量存在于现代制造业中,由于其出钻的特殊加工状态,钻模等辅助方法无法使用。钻头在相当长的时间内处于断续切削状态。轴向力和扭矩均以冲击力出现,极易导致钻头的折断。钻头折断时,轴向力和扭矩均发生了徒增。扭矩的剧烈变化,是折断的主要因素。这为进一步控制和预防钻头折断提供了实验依据。  相似文献   

15.
通过不同钝化半径的刀具对GH4169高温合金进行车削正交试验,结果表明:随着钝化半径的增加,表面残余应力先降低后增加;工件环向残余应力随着钝化半径的增加,工件内部残余压应力最大值增大,影响深度随之增加。由表面粗糙度和表面残余应力的敏感程度可知,进给量是影响表面完整性的最主要因素,其次是切削速度和切削深度。分析了不同钝化半径和切削参数对表面完整性特征的影响规律,建立了表面粗糙度表面残余应力的经验公式,得到了用于精加工GH4169高温合金较好的钝化半径范围0.02~0.03mm,以及较优的切削参数vc=60~70m/min,fn=0.05~0.075mm/r,ap=0.2~0.5mm。  相似文献   

16.
采用自行设计的10支不同内刃圆弧半径、内刃前角和过心量的深孔麻花钻对45#钢进行钻孔加工试验。通过分析钻孔时的轴向力、扭矩和被加工孔精度等因素,研究了横刃对钻削过程的影响,为提高深孔麻花钻寿命、钻削生产效率和孔加工质量提供了指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号