首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diffraction of evanescent plane waves by a resistive half-plane is examined. The scattering integrals are constructed with the modified theory of physical optics. These integrals are evaluated uniformly by using an unusual method. The scattered fields of evanescent waves are obtained by giving the angle of incidence a complex value. The diffracted waves are plotted numerically for different parameters of the incident field.  相似文献   

2.
Vector diffraction analysis of optical disk readout   总被引:3,自引:0,他引:3  
Cheng X  Jia H  Xu D 《Applied optics》2000,39(34):6436-6440
The optical disk readout signals from ROM disks are presented by use of a rigorous three-dimensional vector diffraction method. The optical disk is modeled as a crossed metal grating without restriction on the form of the information marks, and the permittivity of the metal is taken into account. The diffracted field from the disk is obtained by means of decomposing the focused incident beam into a spectrum of plane waves and then calculating the diffracted plane waves for each respective incident component. The readout signal is obtained by integration of the energy-flux density of the diffracted field according to the detection scheme of the optical disk system. A typical digital versatile disk (DVD) system is applied with this theory, and the result is far from that of scalar diffraction theory.  相似文献   

3.
The Gaussian beam propagation in the direction of the optic axis of a uniaxial crystal is treated by the complex-source-point technique. At the input plane the electric field is linearly polarized. A particular superposition of the ordinary-mode and the extraordinary-mode beams is generated. The electrodynamics of the composite beam has features that are different from those of the two constituent beams. As a result of the anisotropy, on propagation, the cross-polarized component of the electric field is generated except along the beam axis; the cross section of the beam, which is circular at the input plane, becomes elliptical; and the mean squared width of the beam departs from the usual quadratic dependence on the distance from the waist in the direction of propagation.  相似文献   

4.
For a linearly polarized three-dimensional Gaussian beam in air that is normally incident upon a plane interface with a uniaxial crystal with optic axis in an arbitrary direction, we present integral representations for the transmitted field suitable for asymptotic analysis and efficient numerical evaluation and derive analytical expressions for transmitted nontruncated Gaussian beams for the cases in which the incident beam is polarized parallel to the plane containing the optic axis and the interface normal and transverse to it. The general solution for an arbitrary polarization state of an incident Gaussian beam follows by superposition of these two solutions.  相似文献   

5.
We derive a formulation that can be used to determine the electromagnetic field distribution in the focal region of a wide-angle spherical mirror illuminated by an obliquely incident and linearly polarized plane monochromatic wave. The integrals representing the diffracted fields derived in part 1 [1] for the two cases of polarization of the incident field are first suitably expanded in series form. The integrals with respect to the azimuth 0 are then evaluated analytically with the help of some new integration formulae developed in this paper. The diffracted field components for the two cases of incident polarization are finally expressed in forms suitable for numerical computation. Our formulae can be used to determine the three-dimensional field distribution in the caustic region of the mirror for any obliquity of the incident beam. Simpler expressions for the field components for a few special cases of interest are also derived. In particular, it is shown that the series solution obtained for the case of oblique incidence reduces to the simpler results found by previous authors for the case of normal incidence.  相似文献   

6.
Exact solutions are obtained for the reflected and transmitted fields resulting when an arbitrary electromagnetic field is incident on a plane interface separating an isotropic medium and a biaxially anisotropic medium in which one of the principal axes is along the interface normal. From our exact solutions for the reflected fields resulting when a plane TE or TM wave is incident on the plane interface, it can be inferred that the reflected field contains both a TE and a TM component. This gives a change in polarization that can be utilized to determine the properties of the biaxial medium. The time-harmonic solution for the reflected field is in the form of two quadruple integrals, one of which is a superposition of plane waves polarized perpendicular to the plane of incidence and the other a superposition of plane waves polarized parallel to the plane of incidence. The time-harmonic solution for the transmitted field is also in the form of two quadruple integrals. Each of these is a superposition of extraordinary plane waves with displacement vectors that are perpendicular to the direction of phase propagation.  相似文献   

7.
A new treatment of the well-known Sommerfeld solution of the problem of plane-wave diffraction from a perfectly conducting half-plane is reported. We show, in both theory and experiment, that the diffraction field (E-polarization) can be represented as a superposition of real physically existing waves, in contrast to geometrical and boundary waves postulated in Sommerfeld's representation. Our representation includes two pairs of wave components: one pair propagates along the direction of the incident wave, and the other in a mirror-reflected direction. Each wave pair consists of a plane-wave component with an amplitude half that of the incident wave and a nearly plane-wave component with an infinitely extended edge dislocation. On the basis of the proposed interpretation, all features of the half-plane diffraction are explained.  相似文献   

8.
To gain insight into the phenomenon of the interaction of stress waves with material defects and the linkage of two cracks, the transient response of two semi-infinite inclined cracks subjected to dynamic loading is examined. The solutions are obtained by the linear superposition of fundamental solutions in the Laplace transform domain. The fundamental solution is the exponentially distributed traction on crack faces proposed by Tsai and Ma [1]. The exact closed form solutions of stress intensity factor histories for these two inclined cracks subjected to incident plane waves and diffracted waves are obtained explicitly. These solutions are valid for the time interval from initial loading until the first wave scattered at one crack tip returns to the same crack tip after being diffracted by another crack tip. The result shows that the contribution of diffracted waves to stress intensity factors is much less than the incident waves. The probable crack propagation direction is predicted from the fracture criterion of maximum circumferential tensile stress. The linkage of these two cracks is also investigated in detail.  相似文献   

9.
Ferrari JA  Garbusi E  Frins EM 《Applied optics》2004,43(28):5350-5355
We study the field diffracted by a plane grating with curved (parabolic) grooves. We will demonstrate that when a monochromatic plane wave is incident on a grating with parabolic grooves the diffracted field has a focal line whose position depends on the curvature radius of the parabolas and the incidence angle of the light onto the grating. The effect described has potential applications in grating-based devices for focusing light without requiring any additional optics.  相似文献   

10.
Diffraction of TM-polarized waves by a slit in a thick screen of infinite conductivity is treated. The case of an arbitrary incident beam wave is considered. We study the resonances that appear when the wavelength of the incident beam wave is larger than the slit width, i.e., the subwavelength regime where a one-mode model for the slit can be considered. High anomalous values (resonances) of the transmission coefficient, the angular diffracted energy, and the magnetic field within the slit are analyzed. A simple linear relationship to determine the resonant wavelengths is proposed. We show that the transmission coefficient, the normal diffracted energy, and the magnetic field within the cavity are linear functions of the resonant wavelength and the thickness of the screen. Additionally and surprisingly, we reveal that under certain conditions the incident beam wave via the diffraction can give a suppressed light transmission; i.e., a minimum in the transmission is obtained where a maximum is expected.  相似文献   

11.
A uniform diffracted field is obtained in terms of Fresnel functions with complex argument by subtracting the unit step function from the Fresnel integral. The method is applied to the problem of diffraction of inhomogeneous plane waves by a perfectly conducting half-plane and wedge. The results are plotted numerically and compared with results reported in the literature.  相似文献   

12.
The geometric theory of diffraction is a well known and very successful asymptotic technique in electromagnetics for the evaluation of scattered fields from objects that are large compared to the wavelength. Our recent work has produced approximate diffraction coefficients for diffracted rays from edges and corners in planar conducting or dielectric surfaces. These diffraction coefficients are tested here by comparing theoretical predictions with experimental measurements made at 30 GHz of the diffracted field from a conducting quarter plane. Very good agreement is found between this asymptotic approach and experimental results for a linearly polarised incident field, with the E field aligned with one of the edges of the quarter plane. The incident field direction is varied from 5° to 54° to the normal to the quarter plane and the total field is measured over a plane behind the target. Average agreement for intensity values is found to be around 95%.  相似文献   

13.
A single object wave is amplitude divided by a beam splitter into two waves of equal intensity that are made to interfere at the back surface of an iron-doped lithium-niobate crystal so that the normal to the back surface is the angular bisector of the input waves. The interference results in the formation of a phase grating (Bragg grating) in the volume of the crystal. These waves are diffracted at the Bragg grating on both the front focal plane and the back focal plane of the crystal. The wave diffracted in the back focal plane from the Bragg grating and counterpropagating to the incident wave is observed to be the phase conjugate of the input object wave. The wave diffracted in the front focal plane of the Bragg grating is incorporated into the design of an interferometer to measure a specific in-plane displacement of the object wave. It is theoretically evaluated and experimentally demonstrated that interferometers such as those that incorporate conjugate-wave pairs are highly sensitive.  相似文献   

14.
The diffraction of plane waves by a planar junction between a resistive half-plane and perfectly conducting wedge is investigated. First of all, the relation between the scattered geometrical optics waves and diffracted fields by a wedge is outlined. Then the scattered GO fields of the planar junction are obtained by subtracting the initial fields from the total geometrical optics waves. The diffracted waves by the junction is derived with the aid of the scattered GO waves’ structure. The behaviour of the fields is analysed numerically.  相似文献   

15.
The scattering of plane waves by a soft–hard half-plane residing between isorefractive medium is studied. The scattered geometrical optics fields are obtained by subtracting the initial geometrical optics fields from the total geometrical optics waves. The diffracted fields are determined by considering the structure of the scattered geometrical optics waves. The uniform expressions for the diffracted fields are derived. The behaviour of the total waves is investigated numerically.  相似文献   

16.
The forward scattering of a Gaussian laser beam by a spherical particle located along the beam axis is analyzed with the generalized Lorenz-Mie theory (GLMT) and with diffraction theory. Forwardscattering and near-forward-scattering profiles from electrodynamically levitated droplets, 51.6 μm in diameter, are also presented and compared with GLMT-based predictions. The total intensity in the forward direction, formed by the superposition of the incident and the scattered fields, is found to correlate with the particle-extinction cross section, the particle diameter, and the beam width. Based on comparison with the GLMT, the diffraction solution is accurate when beam widths that are approximately greater than or equal to the particle diameter are considered and when large particles that have an extinction efficiency near the asymptotic value of 2 are considered. However, diffraction fails to describe the forward intensity for more tightly focused beams. The experimental observations, which are in good agreement with GLMT-based predictions, reveal that the total intensity profile about the forward direction is quite sensitive to particle axial position within a Gaussian beam. These finite beam effects are significant when the ratio of the beam to the particle diameter is less than approximately 5:1. For larger beam-to-particle-diameter ratios, the total field in the forward direction is dominated by the incident beam.  相似文献   

17.
Near-field diffraction patterns are merely aberrated Fraunhofer diffraction patterns. These aberrations, inherent to the diffraction process, provide insight and understanding into wide-angle diffraction phenomena. Nonparaxial patterns of diffracted orders produced by a laser beam passing through a grating and projected upon a plane screen exhibit severe distortion (W311). This distortion is an artifact of the configuration chosen to observe diffraction patterns. Grating behavior expressed in terms of the direction cosines of the propagation vectors of the incident and diffracted orders exhibits no distortion. Use of a simple direction cosine diagram provides an elegant way to deal with nonparaxial diffraction patterns, particularly when large obliquely incident beams produce conical diffraction.  相似文献   

18.
In this article, we investigate the Fresnel diffraction characteristics of the hybrid optical element which is a combination of a spiral phase plate (SPP) with topological charge p and a thin lens with focal length f, named the helical lens (HL). As incident a Gaussian laser beam is treated, having its waist a distance ζ from the HL plane and its axis passing through the centre of the HL. It is shown that the SPP introduces a phase singularity of pth order to the incident beam, while the lens transforms the beam characteristic parameters. The output light beam is analyzed in detail: its characteristic parameters and focusing properties, amplitude and intensity distributions and the vortex rings profiles, and radii, at any z distance behind the HL plane, as well as in the near and far field.  相似文献   

19.
20.
Scattering of SH-waves by an interface cavity   总被引:3,自引:0,他引:3  
Summary. The scattering of the SH-wave and dynamic stress concentrations near an arbitrary cavity situated at the planar interface separating two different elastic media are investigated. The total wave field can be obtained by superposition of the free field and the scattered field. The free field is composed of the incident, reflected and refracted waves. The scattered wave fields in adjacent media are expressed respectively, and the method of wave functions expansion is applied to obtain the solutions for these fields. The scattered wave functions can be expanded into Hankel-Fourier series with unknown coefficients. In solving for the unknown coefficients according to the boundary conditions for the total wave field at the interface and at the cavity wall, the non-orthogonality makes the system of equations for the unknown coefficients infinite and coupling each other. Another key point is to extend each scattered wave field from its own half-plane domain into the full plane domain by a certain way keeping the total wave field unchanged for the non-orthogonal Fourier integrals around the cavity. Finally, the scattering of the SH wave by an interface ellipse with different ratios between long and short axis is considered, and the distributions of dynamic stress concentration factors at the cavity wall are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号