首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A series of blends with Polytetrafluroethylene (PTFE) powder and Polyetheretherketone (PEEK) was developed by varying the PTFE contents in steps of 5 wt.% from 0 to 20 wt.%. The composites were evaluated for their friction and wear properties at room temperature as well as high temperature in low amplitude oscillating wear (LAOW) mode against steel (100 Cr 6) ball against polymer plate. The same blends were also evaluated in abrasive wear mode to study the influence of harsh operating conditions on wear and friction performance. Incorporation of PTFE benefited PEEK in various ways such as it increased the tribo-utility of the latter by increasing its limiting load value, removing its stick-slip tendency, lowering coefficient of friction and specific wear rate significantly. With increase in PTFE content, benefits to the wear performance increased regularly. This was not the case for friction coefficient. Lowest μ was recorded for 15% PTFE contents. The enhancement in wear and friction performance, however, was at the cost of strength properties which decreased substantially with increase in PTFE content. At 100 °C, friction coefficient and wear rates of all blends increased marginally. In abrasive wear mode, on the other hand, PTFE filled PEEK showed poorer wear resistance than neat PEEK. This was correlated with strength properties and it was observed that these blends closely followed the predictions of Ratner–Lancaster plot. SEM was used to examine the micro-structural features of worn surfaces.  相似文献   

2.
Tribo-potential of bi-directionally (BD) reinforced polymer composites is not yet adequately explored especially in low amplitude oscillating wear (LAOW)/fretting wear mode. Hence five composites of Polyetherimide (PEI) containing carbon fabric (plain weave) in the range 40–85 by vol% were developed by impregnation technique followed by compression molding. These composites along with unfilled PEI were evaluated for their LAOW performance on SRV Optimol tester under different loads using ball-on-plate configuration. The performance was compared with that of composite evaluated in earlier work but developed with different processing technique (hand lay up). With increase in load, specific wear rates of all the composites increased while friction coefficient (μ) decreased. It was concluded that carbon fabric inclusion in all amounts proved significantly beneficial for improving friction and wear performance and limiting load of PEI. Very high and very low amount of CF (85 and 40 vol%) proved least beneficial from strength and tribo-performance point of view. Composites with moderate amount of CF (65 and 55 vol%) proved most promising with almost similar potential in reducing μ and wear rate of PEI. Overall CF in the range of 55–65 vol% appeared to be the optimum range for tailoring the strength properties along with tribo-performance in fretting wear mode. The impregnation technique proved significantly better than the hand lay up technique for enhancement in strength and tribo-performance. SEM studies on worn surface proved helpful in understanding wear mechanisms.
J. BijweEmail:
  相似文献   

3.
利用真空热压烧结技术制备了不同碳纤含量的碳纤维/聚醚醚酮(CF/PEEK)复合材料,采用热导率分析仪和热重测试仪对材料的热学性能进行表征,并利用多功能摩擦磨损试验机、三维形貌轮廓仪、扫描电子显微镜和摩擦静电计对材料的摩擦磨损性能和抗摩擦静电性能进行分析。分析结果表明:随着CF添加量的增加,复合材料摩擦因数、磨损率和摩擦静电电压先降低后升高,当CF添加量(质量分数)为20%时,摩擦因数、磨损率和摩擦静电电压达到最低,分别为0.247、5.6×10-6 mm/(N·m)和3.3 V,证明此种方法制备的20%CF/PEEK材料具有优异的摩擦磨损性能和抗静电性能。CF/PEEK复合材料磨损机理以黏着磨损为主,并且伴随着轻微的磨粒磨损。  相似文献   

4.
Jayashree Bijwe  Sukanta Sen  Anup Ghosh 《Wear》2005,258(10):1536-1542
Few papers are available on the optimum composition of PEEK-PTFE blends for the best possible combination of mechanical and tribological properties in the adhesive wear mode. Nothing is reported in this context on low amplitude oscillating/fretting wear mode. Moreover, the influence of increasing amounts of PTFE in the blend on abrasive wear behaviour along with a correlation with strength properties is not reported. Hence, in this work, five injection-moulded blends of PEEK with PTFE (in the range of 0-30 wt.%) were evaluated on a pin-on-disc configuration on an SRV Optimol Tester for their tribo-behaviour in the low amplitude oscillating wear mode. The data in the abrasive wear mode were generated by abrading a pin loaded against an abrasive paper fitted on the rotating disc. Data on neat PTFE were also included for comparison. It was observed that inclusion of PTFE affected the adhesive wear and low amplitude oscillating wear (LAOW) in a beneficial way. With an increase in PTFE contents, coefficient of friction in both the wear modes (adhesive and low amplitude oscillating) decreased but the trends in wear performance differed. In the adhesive wear mode, the specific wear rate showed minima for 7.5% PTFE inclusion followed by a slow increase for further PTFE addition. In the case of LAOW mode, on the other hand, the wear rate continuously decreased for the selected compositions. The 30% PTFE blend showed excellent combination of μ, wear rate and limiting pressure-velocity (PV) values. Unfilled PEEK proved to be fairly good wear-resistant material but exhibited high μ, a stick-slip tendency and a low PV limit value. Abrasive wear performance of the blends on the other hand, deteriorated with increasing amount of PTFE. Fairly good correlation was observed between the wear rate and product of H and S (H-hardness and S-ultimate tensile strength) rather than Ratner-Lancaster plot (product of S and e, where e is elongation to break).Thus, with increase in PTFE contents, though adhesive and LAOW performance increased substantially, it was at the cost of deterioration in all mechanical properties (except impact strength) and abrasive wear performance.  相似文献   

5.
为改善聚醚醚酮(PEEK)在矿井工况下的摩擦性能,选用纳米二氧化硅(SiO2)、二硫化钼(MoS2)和短切碳纤维(CF)为增强填料制备PEEK/SiO2/CF-MoS2复合材料,并探究PEEK/SiO2/CF-MoS2复合材料在不同工况条件下的滑动与滚动摩擦学性能;通过模拟滚轮罐耳在矿井环境下的运行方式,分析其磨损形貌和磨损机制。结果表明:PEEK/SiO2/CF-MoS2复合材料在不同载荷条件下均具有良好的减摩和耐磨特性;滑动摩擦在水介质工况下及滚动摩擦在干摩擦工况下,复合材料的摩擦因数和磨损率最低,其磨损机制均以磨粒磨损为主。与矿井常用的聚氨酯材料的对比,PEEK/SiO2/CF-MoS2复合材料的摩擦学性能更为优异。  相似文献   

6.
Carbon fiber (CF) reinforced polyetheretherketone (PEEK) composites were prepared and their tribological behaviors under sea water lubrication were comparatively investigated. The results showed that the incorporation of CF can greatly improve the wear resistance of PEEK under sea water lubrication, especially when the volume fraction of CF was about 10%, because exposed CF can effectively share the main load between the contact surfaces and consequently protect the matrix from severe wear. In addition, CF/PEEK had better friction and wear properties under sea water lubrication than under dry friction and pure water lubrication due to better lubricating effect of sea water.  相似文献   

7.
The role of PTFE in tailoring the tribological performance of PEEK is not clear from the literature, and conflicting evidence is reported about its ability to improve friction, wear, or both. Moreover, little has been reported on the optimum composition of such blends for the best possible combination of mechanical and tribological properties. Hence, in this work various blends of PEEK with PTFE have been injection moulded and characterised for their mechanical properties. Their friction and wear behaviour was evaluated using a pin‐on‐disc machine. It was observed that the inclusion of PTFE powder not only removed scuffing problems associated with the friction behaviour of PEEK, but also improved both friction and wear characteristics. A blend with 7.5 wt. % PTFE showed the best wear behaviour, while a blend with 30 wt.% PTFE exhibited the best friction performance. A concentration of 7.5 wt. % PTFE was thought to be the optimum amount for the best possible combination of mechanical and tribological properties.  相似文献   

8.
采用机械共混-冷压成型-烧结的工艺制备了PEEK、PPS填充PTFE基粘弹.摩擦型阻尼材料,用环-块式磨损试验机研究了在干摩擦条件下的摩擦磨损性能;用扫描电子显微镜观察磨损表面形貌和内部组织结构。结果表明:混合填充PEEK和PPS时,2种填充物的比例对材料的摩擦因数影响不大,当二者含量相近时,摩擦因数最大;填充物对磨损性能的影响与对摩擦因数的相同;随着PEEK含量的增加和PPS含量的减少,材料的磨损方式由疲劳剥落磨损为主转变为犁削、粘着磨损;PTFE含量的增加,使得复合材料的摩擦因数减小,而磨损有所增大。综合考虑认为,PTFE与适当比例的PEEK/PPS混合填充,具有合适的摩擦因数和较好的耐磨性,能够满足特殊工况下阻尼材料的需要。  相似文献   

9.
The friction and wear behaviour of polyetheretherketone (PEEK) composites, incorporating different amounts of short carbon fibres with different surface treatments, was studied under dry sliding conditions against smooth steel on a pin-on-disc apparatus at different temperatures. Wear of the composites was reduced considerably in all cases, but, whatever the surface treatment, wear increased with increasing temperature for all proportions off fibres. For minimum friction coefficient there was an optimum proportion of fibre volume fraction of about 10 vol.%. The effect of the fibre surface treatment was not significant for the tribological behaviour of the PEEK composites. To predict wear performance, a wear model proposed by Friedrich and Voss seemed to work properly, and, furthermore, a friction model was developed to predict the friction behaviour of PEEK composites with short carbon fibres.  相似文献   

10.
《Wear》2007,262(5-6):727-735
Three composites were fabricated based on Polyetherimide (PEI) matrix and carbon fabric (CF) (55 vol.%) of different weaves, viz. plain, twill and satin (4H) by impregnation technique. These composites were evaluated for various mechanical properties and tribological performance in low amplitude oscillating wear (LAOW)/fretting wear mode. It was observed that CF reinforcement led to a significant enhancement in all strength and modulus properties of PEI except elongation to break (e). Twill weave proved to be the most effective followed by satin and plain weave in almost all the properties. The LAOW mode evaluation under various loads revealed that the wear performance order was exactly opposite to the above trend. Overall, plain weave composite was the best performer followed by twill and satin. Various wear mechanisms, such as fiber-matrix debonding due to repetitive reciprocating shearing stresses, micro-cracking, micro-cutting and pulverization of fibers followed by removal of debris from the contact zone were operative during such wear situation. Amongst these processes, generation of fiber debris, their temporary retention in fabric weaves and subsequent removal from the crater played a key role in overall wear performance. The ability of plain weave to hold back the debris was maximum that resulted in lowest wear while satin weave had the minimum retention ability that led to the highest wear. The proposed wear mechanisms were supported by SEM studies.  相似文献   

11.
Polyetheretherketone (PEEK)-based composites reinforced with lubricant additive (polytetrafluoroethylene, PTFE) and reinforcement additives including carbon fiber (CF), glass fiber (GF), and bronze powder were prepared using a hot-press molding technique. The synergetic effects of different additives on the tribological behaviors of PEEK-based composites sliding against 316 steel under seawater lubrication were investigated systematically using a ring-on-block test rig. The results showed that lubricant additive PTFE can decrease the friction coefficient and consequently improved the wear resistance of PEEK under seawater lubrication, especially when the volume fraction of PTFE was about 20%. It was also found that the incorporation of CF can further improve the wear resistance of PEEK blended with 20% PTFE, especially under high load and high sliding speed. This suggested that a synergistic effect on improving the wear resistance of PEEK existed between PTFE and CF, which originated from good lubrication of PTFE, good reinforcement of CF, and good interfacial combination between CF and PEEK-20%PTFE. However, two other reinforcement additives of GF and bronze powder had an antagonistic effect but not a synergetic effect with PTFE; that is, the incorporation of the two additives greatly deteriorated the wear resistance of PEEK blended with 20% PTFE.  相似文献   

12.
Three kinds of metal-plastic multilayer composites, which were composed of a steel backing, a middle layer of sintered porous bronze and a surface layer of polytetrafluoroethylene (PTFE) filled by Pb or Cu2O powders, were prepared. The friction and wear properties as well as the limiting pressure times velocity (PV) values of these metal-plastic multilayer composites sliding against 45 carbon steel under both dry and oil lubricated conditions were evaluated on a MPV-1500 friction tester with a steel axis rotating on a journal bearing. The worn surfaces of these metal-plastic multilayer composites and the transfer films formed on the surface of steel axis were examined by electron probe microscopy analysis (EPMA). Experimental results show that filling of Pb to PTFE reduces the friction coefficient and wear of the composite, while filling of Cu2O to PTFE increases the friction coefficient but decreases the wear of the composite. The friction and wear properties as well as the limiting PV values of these metal-plastic multilayer composites can be greatly improved with the oil lubrication. EPMA investigations show that Pb and Cu2O fillers preferentially transfer onto the surfaces of steel axis, which may enhance or deteriorate the adhesion between transfer films and steel surfaces. Meanwhile the transfer of these metal-plastic multilayer composites onto the steel surface can be greatly reduced with oil lubrication, which results in the remarkable decrease of the wear of these metal-plastic multilayer composites.  相似文献   

13.
为研究3D打印各向异性对摩擦性能的影响,通过熔融沉积成型(FDM)制备了0°、45°、90°3种打印角度的聚醚醚酮(PEEK)试样,研究3种不同打印角度及载荷变化对PEEK试样摩擦学性能及磨损机制的影响。利用MFT-5000摩擦磨损试验机对PEEK材料进行室温水润滑下的往复滑动摩擦试验,用超景深显微镜观察磨损后表面形貌。试验结果表明:不同载荷下3种打印角度试样的摩擦因数由大到小依次为0°试样、90°试样、45°试样,磨损率由大到小依次为90°试样、45°试样、0°试样;随着载荷的增大,3种不同打印角度试样的摩擦因数均呈现下降趋势,磨损率则呈现上升趋势;PEEK磨损机制是黏着磨损以及疲劳磨损引起的表层脱落。  相似文献   

14.
Hierarchical porous PEEK self-lubricating composites were prepared by mold-leaching and vacuum melting process under high temperature. The tribological behaviors were investigated for the porous PEEK composite and the porous composite after incorporating micro-porogen (NaCl) and mesoporous titanium oxide whiskers. If only micro-porogen was incorporated, the lowest steady state specific wear rate was observed for PEEK composites filled with 30% NaCl. Based on this porous PEEK composite, the effects of mesoporous titanium oxide whiskers and non-perforated titanium oxide whiskers on the friction and wear properties of PEEK composites were studied. Results showed that nano-micro porous PEEK composites with 30 wt% micro-porogen and 5 wt% mesoporous titanium oxide whiskers reached the lowest friction coefficient and specific wear rate, which were recorded as 0.0194 and 2.135×10–16 m3/Nm under the load of 200 N. Compared with 15 wt% carbon fiber-reinforced PEEK composite which is widely used in industry, the wear resistance of the designed hierarchical porous PEEK composite increased by 41 times, showing outstanding wear resistance.  相似文献   

15.
Polymer composites are used as facing materials in hydrodynamic bearings for their low friction and ‘compliant’ properties, which play an important role during machinery operation. In journal bearings, this low friction property can be of significant importance during start and stop cycles when insufficient oil is available to fully separate the surfaces in relative motion. Current work is aimed at determining a suitable material for use in hydrodynamic journal bearings for applications in hydroelectric power plants. This study investigates friction and wear encountered during the transition from the stationary state to operational speed (acceleration) during initial start‐up. This is examined for virgin poly‐tetra‐fluoro‐ethylene (PTFE) together with a series of commercially available PTFE‐based composites and a babbitt material in boundary/mixed lubrication conditions. Tests are performed using standard laboratory block‐on‐ring test apparatus with a VG32 mineral oil. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Friction and wear characteristics of a type of polyetheretherketone (PEEK)- based composite were evaluated under two different loading pressures and sliding speeds (P = 1.0 MPa, V = 1.0 m/s and P=2.0 Mpa, V=3.3 m/s). The material was in contact with steel surfaces of two different roughnesses (Ra=0.15 μm and Ra=0.33 μm). Interface temperature, coefficient offriction, depth wear rate, and specific wear rate of the polymer composite changed considerably with the PV value and the counterface roughness. The interface temperature increased with increasing PV value, whereas the friction coefficient decreased. The depth wear rate at the higher PV value was much higher than that at lower PV. In addition, the rougher counterface resulted in a higher friction coefficient, depth wear rate, and specific wear rate, when the PV value was fixed. The effect of counterface roughness on the specific wear rate at the higher PV value was smaller than that at the lower PV. Further variations in friction and wear with testing conditions are discussed along with the corresponding microscopic observations of the worn polymer surfaces and the polymer transferred counterfaces.  相似文献   

17.
Black phosphorus (BP), a newly emerging two-dimensional material, has recently received considerable attention. Our recent work suggested that BP nanosheets exhibit extraordinary mechanical and lubrication properties. In the present work, the tribological properties of polyetheretherketone (PEEK)/polytetrafluoroethylene (PTFE) and carbon fiber (CF)/PTFE composites with BP nanosheets have been investigated. The morphologies and surface element distribution of the worn tracks of the tribopair surfaces were examined by different analytical techniques. The results show that the coefficients of friction (COFs) of both the PEEK/PTFE and CF/PTFE composites decreased dramatically after the addition of BP nanosheets, and the minimum COF of the composite was 0.04, which was a quarter of that of the PTFE composite without BP nanosheets. After BP nanosheets were added into the composites, the wear rate of the PTFE/PEEK composite decreased dramatically, while that of the CF/PTFE composite increased significantly with the increase in the filler concentration. The analysis of the lubrication mechanism of the PTFE composite with BP nanosheets suggested that BP nanosheets could be constantly supplied into the contact area and gradually formed a BP film composed of phosphorus oxide and phosphoric acid on the counterpart surface instead of the formation of PTFE transfer film. The formed BP transfer film promoted the friction reduction and the disappearance of the adhesive wear.  相似文献   

18.
Hot‐pressed, laboratory‐made, ZrO2‐based composites with 40 vol. % WC, TiCN or TiN were surface finished by electrical discharge machining in order to compare their reciprocating sliding friction and wear response against WC–6wt%Co cemented carbide in unlubricated conditions. Sliding experiments were performed using a Plint TE77 pin‐on‐flat wear test rig, revealing a strong impact of the secondary phase on the tribological behaviour of the ZrO2‐based composites. The worn surfaces and wear debris were characterised by scanning electron microscopy, energy dispersive X‐ray analysis and surface topography scanning, pointing out abrasion, polishing and adhesion as main wear mechanisms. The most favourable friction and wear characteristics were encountered with ZrO2–WC composites compared to the other grades with equal amount of volumetric secondary phase. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Nanometre SiO2 filled-polyetheretherketone (PEEK) composite blocks with different filler proportions were prepared by compression moulding. Their friction and wear properties were investigated on a block-on-ring machine by running a plain carbon steel (AISI 1045 steel) ring against the composite block. The morphologies of the wear traces and the transfer film were observed by scanning electron microscopy (SEM). It was found that nanometre SiO2 filled-PEEK exhibited considerably lower friction coefficient and wear rate in comparison with pure PEEK. The lowest wear rate was obtained with the composite containing 7.5 wt.% SiO2. The SEM pictures of the wear traces indicated that with the frictional couple of carbon steel ring/composite block (fillec with 7.5 wt.% filler), a thin, uniform, and tenacious transfer film was formed on the ring surface. It was inferred that the transfer film contributed largely to the decreased friction coefficient and wear rate of the filled PEEK composites.  相似文献   

20.
采用模压成型的方式制备超高分子量聚乙烯(UHMWPE)复合材料,通过AG-1型电子万能实验机和MM-200型摩擦磨损试验机分别研究填料对复合材料力学性能和摩擦磨损性能的影响,采用光学显微镜分析复合材料磨损表面的形貌。结果表明:聚丙烯(PP)和无机填料炭黑(CB)或CB与碳纤维(CF)混杂填料的加入使UHMWPE复合材料的拉伸强度降低,弯曲模量和硬度增加,其中UHMWPE/PP/CB/CF复合材料的弯曲模量和硬度增幅大于UHM-WPE/PP/CB复合材料。填料的加入可改善UHMWPE复合材料的摩擦磨损性能,当填料的质量分数为5%时,UHMWPE复合材料的摩擦磨损性能最好,且UHMWPE/PP/CB/CF复合材料的耐磨性能优于UHMWPE/PP/CB复合材料。与UHM-WPE相比,UHMWPE/PP/CB/CF复合材料的摩擦因数和磨痕宽度分别下降了10%和44%,UHMWPE/PP/CB复合材料则分别下降了12%和42%。光学显微镜观察表明填料的加入大大改善了UHMWPE的磨粒磨损,复合材料表面以较浅的犁沟磨损为主要特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号