首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 234 毫秒
1.
为确保高维数据的神经网络分类精度,提出了先降维后分类的方法。采用主成分分析(PCA)法实现高维数据的降维。通过分析传统BP算法,提出分两步来更新网络权值的扰动BP学习方法。采用MATLAB对降维分类算法的分类精度和误差收敛速度进行分析。仿真结果显示:先降维再采用扰动BP网络进行高维数据分类可大大提高数据的分类精度和训练速度。  相似文献   

2.
为提高BP神经网络预测模型的预测准确性,提出了一种基于改进粒子群算法优化BP神经网络的混沌时间序列预测方法。引入自适应变异算子对陷入局部最优的粒子进行变异,改进了粒子群算法的寻优性能; 利用改进粒子群算法优化BP神经网络的权值和阈值,训练BP神经网络预测模型求得最优解。将该预测方法应用到几个典型的非线性系统的混沌时间序列进行有效性验证,结果表明了该方法对典型混沌时间序列具有更好的非线性拟合能力和更高的预测准确性。  相似文献   

3.
随着网络规模的增长,Overlay网络流量预测已经日渐成为研究热点。与传统网络相比,Overlay网络本身的特性决定了传统的预测方法已不能适应它的要求。提出一种基于模拟退火的粒子群神经网络来预测Overlay网络的流量,运用反向计算方法,从理想最优值出发,近距离寻找最优解,缩短了求解时间并加大了找到最优解的几率。通过实验仿真可以看出,改进的BP神经网络方法的预测效果要明显好于传统的BP神经网络。  相似文献   

4.
遗传算法优化BP神经网络的混沌时间序列预测   总被引:4,自引:0,他引:4       下载免费PDF全文
为提高BP神经网络预测模型对混沌时间序列的预测精度,将改进的遗传算法和BP神经网络结合,提出了一种基于改进遗传算法优化BP神经网络的混沌时间序列预测方法。利用改进的遗传算法优化BP神经网络的权值和阈值,训练BP神经网络预测模型求得最优解。将该模型应用到几个典型的非线性系统进行预测仿真,验证了该算法的有效性,与BP神经网络预测模型的预测结果进行了比较,仿真结果表明该方法对混沌时间序列具有更好的非线性拟合能力和更高的预测精度。  相似文献   

5.
徐麟  许婷婷 《信息与电脑》2023,(4):181-183+189
文章基于《中国统计年鉴》公布的数据,通过建立反向传播(Back Propagation,BP)神经网络预测算法,使用多项式拟合算法模型和修正的Logistic模型两种算法进行对比,对2030年的人口进行预测。预测数据结论表明,3种算法预测的人口总数同国家人口发展报告预测的人口总数相比,其绝对误差均在误差范围内。其中,误差最小的是BP神经网络预测模型,该模型预测2030年总人数为14.33亿,绝对误差为0.006。  相似文献   

6.
BP神经网络预测全国私人汽车拥有量   总被引:2,自引:0,他引:2  
利用前向多层神经网络的反向传播算法,即BP算法。采用MATLAB软件建立用于预测的BP神经网络(4-5-2),将已知私人汽车拥有量对BP神经网络进行训练,建立私人汽车拥有量时间序列的预测模型,此BP神经网络可以成功对私人汽车拥有量进行预测计算。  相似文献   

7.
针对BP神经网络预测模型收敛速度慢和容易陷入局部极小值的缺点,将差分进化算法和神经网络结合起来,提出了一种基于差分进化算法的BP神经网络预测混沌时间序列的方法,利用差分进化算法的全局寻优能力对BP神经网络的权值和阈值进行优化,然后训练BP神经网络预测模型求得最优解,将该预测方法用到3个典型的混沌时间序列进行算法的有效性验证,并与BP算法的预测精度进行了比较,仿真结果表明该方法对混沌时间序列预测具有更好的非线性拟合能力和更高的预测准确性。  相似文献   

8.
为了提高短时交通流量的预测精度,提出一种布谷鸟搜索算法优化BP神经网络参数的短时交通流量预测模型(CS-BPNN)。基于混沌理论对短时交通流量时间序列进行相空间重构,将重构后的时间序列输入到BP神经网络进行学习,采用布谷鸟搜索算法找到BP神经网络最优参数,建立短时交通流量预测模型,通过具体实例对CS-BPNN性能进行测试。仿真结果表明,相对于对比模型,CS-BPNN提高了短时交通流量的预测精度,更加准确反映了短时交通流量的变化趋势。  相似文献   

9.
手写数字逆向传播(Back Propagation,BP)神经网络由输入层、隐藏层、输出层构成。训练数据是MNIST开源手写数字集里60?000个样本,BP算法由随机梯度下降算法和反向传播算法构成,采用network小批量数据迭代30次的网络学习过程,训练出合适的权重和偏置。利用现场可编程门阵列(Field Programmable Gate Array,FPGA)硬件平台,Verilog代码实现BP算法、时序控制各层网络训练状态、Sigmoid(S型)函数及导数线性拟合是设计重点。初始化均值为0,方差为1的高斯分布网络权重和偏置,采用小批量数据个数[m]为10,学习系数[η]为3,在系统中输入样本及标签利用Quartus13.0和modelsim仿真与分析,工程运行迭代30次时间是4.5 s,样本识别正确率是91.6%,与软件python2.7相比满足了硬件设计的实时性和手写数字识别的高准确率。  相似文献   

10.
机场噪声预测对机场噪声控制、航班计划制定和机场规划设计具有十分重要的作用。现有的机场噪声预测模型都是以飞机的噪声距离曲线(NPD曲线)为核心,用相应的数学模型将其修正至与具体机场的特定环境条件相关的噪声传播模型,存在预测成本高和误差大的缺点。针对这种情况,提出一种使用BP神经网络利用机场噪声历史监测数据进行NPD曲线修正计算方法,从而建立适用于特定机场环境条件的机场噪声预测模型。实验表明,在特定机场的特定环境条件下,允许误差为0.5 dB时,该模型预测准确率高达91.5%以上,具有预测成本小、准确度高的特点。  相似文献   

11.
针对BP神经网络在经济预测存在的问题,提出了一种新的经济预测模型──免疫人工鱼群神经网络(IAFSA-NN)。通过免疫人工鱼群算法(IAFSA)训练神经网络,能显著提高网络的学习精度、收敛速度、泛化能力、还能在一定程度上克服BP神经网络的缺陷。以广东省湛江市的经济数据进行建模,给出了IAFSA训练神经网络的基本原理和步骤,构建了一个免疫人工鱼群神经网络的GDP预测模型,并运用MATLAB7.0进行仿真。实证表明,该模型预测结果优于BP网络预测方法,更接近实际数据,IAFSA神经网络用于经济预测是有效可行的。  相似文献   

12.
根据三相异步电机的数学模型,提出了一种基于智能算法优化的速度观测器,以实现无速度传感器在直接转矩控制系统中的速度闭环控制。在通过BP神经网络训练得到的DTC系统的速度观测器的基础上,针对BP神经网络寻优参数多、易陷于局部极值以及初始设置对训练结果影响大等的不足,采用遗传算法对其进行优化设计。由仿真结果可知,用遗传算法优化后的BP神经网络较单纯的BP神经网络速度观测器具有更高的精度。  相似文献   

13.
PSO粒子群算法在神经网络泛化能力中研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用PSO粒子群算法对神经网络的权值和阈值,隐藏层中神经元的传递函数系数进行优化。针对网络训练效果好,而泛化能力很差的情况,将训练样本均方差和权值的平方和结合作为PSO算法的目标函数。实验表明,该方法比惯性权值PSO-BP算法和基本梯度下降法好,不但稳定性好,而且预测精度高,泛化能力得到明显加强。  相似文献   

14.
人工蜂群算法是模拟蜜蜂采蜜行为而提出的一种新的启发式仿生算法,属于典型的群体智能算法。提出了一种改进的人工蜂群算法,并利用改进后的人工蜂群算法来优化传统BP算法(神经网络算法中的误差方向传播算法)中网络参数的权值。实验结果证明该优化算法提高了BP神经网络收敛解的精度,加快了BP神经网络收敛速度。  相似文献   

15.
针对现有度量方法中考虑因素不够全面和因子权重计算依据经验确定的不足,提出粒子群优化BP神经网络(PSO-BP)的地理本体概念语义相似度度量模型。该模型利用本体属性、本体结构和语义关系的相似度,结合权重信息计算概念的综合相似度;同时,利用粒子群算法优化的BP神经网络获取因子权重,避免现有方法中因子权重确定的人为主观干扰。最后,从基础地理信息概念中提取出200组样本,用其中190组作为训练集,对神经网络模型进行训练,以获取权重;剩余10组作为测试集。将该模型和几种常用算法进行对比,通过分析测试集的各算法求解结果和专家判定结果之间的相关系数,结果表明该模型计算地理本体概念的相似度更为准确,符合人类认知特性,效果更好。  相似文献   

16.
基本萤火虫算法存在容易陷入局部最优及收敛速度低的问题,提出了一种改进进化机制的萤火虫算法(IEMFA)。在群体进化过程中赋予萤火虫改进的位置移动策略,并利用改进后的萤火虫算法来优化传统BP神经网络的网络参数。测试结果表明,基于改进萤火虫算法的BP神经网络具有更好的收敛速度和精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号