共查询到20条相似文献,搜索用时 78 毫秒
1.
基于奇异值分解和支持向量机的人脸检测 总被引:3,自引:0,他引:3
人脸检测在自动人脸鉴别工作中具有重要的意义。由于人脸图像特征的复杂性和多样性,使得人脸模式分类器的训练十分困难。本文提出了一种基于支持向量机(SVM)的人脸检测算法,使用了奇异值分解对训练样本进行特征提取,再由SVM分类器进行分类,有效的降低了训练难度,采用二阶多项式作为SVM分类器的核函数,实验结果表明,该方法是十分有效的。 相似文献
2.
3.
4.
提出了基于奇异值特征和隐马尔可夫模型(HMM)的人脸检测方法,首先提出了基于奇异值特征和隐马尔可夫模型的正面端正人脸检测方法;然后将该算法扩展到检测任意旋转角度的人脸,其中正向端正人脸检测算法是通过隐马尔可夫模型来识别人脸/非人脸的奇异值特征,从而达到人脸检测的目的;扩展算法首无计算当前位置子图象窗口的奇异值特征向量,然后利用识别各个旋转角度人脸的HMM模型对之进行分类,以得到该子图象窗口的旋转角度,再经过旋正,重新再与识别正面端正人脸的HMM模型对, 此确定该子图象窗口是否为人脸,通过对一个由51幅集体照片组成的图象集进行测试,其中,正面端正人脸检测率为85.1%,而任意旋转角度的人脸检测率只有72.2%。 相似文献
5.
基于小波和奇异值分解的人脸识别方法 总被引:2,自引:1,他引:2
该文提出了一种基于小波和奇异值分解的人脸识别方法。首先对人脸图象进行小波分解,由于小波变换具有良好的多尺度特征表达能力,能将图象的大部分能量集中到低频子图中,使图象得到有效压缩。然后,对得到的每幅低频子图进行基于奇异值分解的特征提取,并将奇异值特征向量进行压缩,把压缩后的特征向量作为每幅人脸图象的特征,进而求出每一类人脸图象的特征向量中心。最后,将每一类的特征向量中心输入到分类器中进行识别。最终得到了令人满意的识别结果。 相似文献
6.
7.
8.
基于小波变换和改进的奇异值分解的人脸识别 总被引:1,自引:0,他引:1
使用基于肤色的检测方法分割出人脸并进行归一化,利用小波变换压缩降维以减少计算量。针对原有奇异值分解的不足,将图像矩阵进行投影,并将整体与三组局部图片的奇异值结合进行改进,利用BP神经网络进行分类识别,进行人脸识别仿真实验。结果表明,所提出的基于小波变换和改进的奇异值分解特征提取方法是一种实用、可行的方法。 相似文献
9.
针对仅在整幅人脸图像上进行奇异值分解无法得到人脸识别所需的足够信息的问题,提出了一种利用人脸图像的局部奇异值和灰色关联分析进行人脸识别的方法。该方法的关键是不在整幅人脸图像上进行,而是在人脸的不同区域进行奇异值分解以提取更丰富的信息和克服"小样本"效应。在识别阶段,对待识别人脸的特征向量,计算其对各人脸样本的隶属度,最后做出判断。该方法与传统方法在ORL人脸库上进行的对比实验结果,表明了该方法的优越性。 相似文献
10.
在人脸识别领域应用张量奇异值分解( TSVD)来进行人脸特征的表示和提取,克服了过去的提取方法,如主成分分析法( PCA)等过于依赖拍摄条件的缺点。 TSVD将数据转换成三维线性模型,所以能避免二维线性方法中条件改变则精确度下降的问题,使得识别算法在变化的条件下获得了相对稳定的结果。在此基础上对算法进行了优化,利用矩阵分解,在不影响算法正确率的情况下,有效减少计算量,提高算法效率。基于Matlab对该算法进行了四组实验,并将结果与用PCA方法得到的结果对比,验证了该识别算法在变化条件下显著的正确性以及稳定性;同时,对优化的TSVD算法进行了实验验证,在数据量较大的情况下,该算法速度明显提高。 相似文献
11.
现有的人脸识别算法多在标准库上进行,缺少对复杂背景下人脸识别问题的研究。提出一种快速的人脸定位识别方法,旨在解决复杂背景中人脸的定位和识别问题。在定位方面,提出一种新的自适应肤色分割的人脸定位算法,充分考虑类肤色背景对定位算法的影响,使该算法在户外环境下的人脸定位精度较传统方法有了一定的提高;识别方面,采用局部SVD方法提取人脸图像特征值,以PCA算法加以识别,新算法改进了传统PCA训练速度慢、内存占用大的缺陷。通过对ORL人脸库以及自制人脸库的实验分析,结果表明该方法不仅能解决复杂背景中人脸定位识别问题,并且高效、快速、有较好的实用性。 相似文献
12.
利用巴氏距离(Bhattacharyya Distance)和PCA(Principal Component Analysis)相结合进行人脸识别研究,提出了使用巴氏距离和PCA相合的算法对特征进行提取。当特征向量维数高时,首先对样本K-L(Karhunen-Loeve)变换进行降维,然后采用巴氏距离特征的迭代算法,得到最小错误率上界。基于ORL人脸数据库的实验表明该方法的识别性能优于LDA、HPCA、HLDA,采用文中的算法可以有效地提高识别率,减少巴氏距离特征计算时间,具有较强的实用性。 相似文献
13.
14.
提出了一种二维类增广PCA(2DCAPCA)的人脸识别算法。用二维PCA(2DPCA)方法直接对人脸图像矩阵进行特征提取,对提取的特征进行归一化处理,将归一化处理后的特征与类别信息结合构成类增广矩阵,对类增广矩阵进行2DPCA处理,提取图像的类增广矩阵特征。由于该算法既保留了人脸图像的结构信息,又考虑了样本的类别信息,识别率有了较大的提高。通过Yale和FERET库上的实验表明,该方法对人脸识别是有效的。 相似文献
15.
针对传统预处理方法在特征提取之前不能对人脸图像进行局部化处理,不能分析出感兴趣区域及受背景环境影响等缺点,提出一种人脸图像的自适应预处理方法。该方法通过二维Gabor滤波器从人脸图像中确定人眼位置,通过图像分割算法提取出感兴趣区域,缩放图像,运用主分量分析方法进行特征提取,通过二维最小近邻分类法进行分类,从而完成人脸识别过程。实验结果表明,基于自适应预处理的人脸识别方法能够有效去除头发、脖子、肩及与人脸无关的部分,提高了人脸识别率,且对一定的平移、旋转、尺度变化和表情有良好的鲁棒性。 相似文献
16.
提出一种图像的自嵌入水印算法,该算法将图像分块奇异值分解,并提取每块的最大奇异值实施量化生成量化图像。量化图像生成的二值编码经过置乱和混沌加密后嵌入到原始图像的置零位之中。算法不仅能检测和定位对图像的篡改,而且能恢复被篡改图像的内容。实验结果表明篡改定位准确,被损坏的图像内容恢复质量较好。 相似文献
17.
提出了一种融合两种主成分分析的人脸识别方法。首先,利用两种不同的主成分分析方法分别获得人脸识别结果;然后,从信息融合的角度出发,采用模糊综合的原理对结果进行融合,给出最终的识别结果。基于ORL人脸数据库的实验证明该方法的识别性能优于单一的主成分分析方法。 相似文献
18.
提出了一种改进的模块PCA方法,即基于独立特征抽取的模块PCA方法。算法先对图像进行分块,然后对每一子块独立地进行PCA处理,求出测试样本子块与训练样本对应子块间的距离;最后将这些距离相加得到测试样本与训练样本的距离,用最近距离分类器分类。在ORL人脸库和Yale人脸库上的实验结果表明,提出的方法在识别性能上明显优于普通模块PCA方法。 相似文献
19.
由于热红外人脸图像具有防伪装、防欺诈以及独立于环境光照的特点,所以近年来热红外人脸识别问题备受关注。提出一种基于Gabor小波和SVD的热红外人脸识别新方法。对归一化后的热红外人脸图像进行多方向多尺度Gabor变换,得到多个Gabor特征矩阵;对每个矩阵进行奇异值分解,并把每个矩阵最大的奇异值组合起来作为最终的热红外人脸特征向量;使用径向基神经网络进行分类识别。在自建热红外人脸数据库上的实验结果表明,相比于传统的识别方法,该方法具有较好的识别效果。 相似文献
20.
由于Gabor小波描述的人脸特征维数太高,直接将Gabor小波提取的特征进行识别时出现计算量大、实时性差的问题,提出了基于Gabor小波变换与分块主分量分析的人脸识别新算法。首先对人脸图像进行Gabor小波变换得到人脸图像特征,然后用分块主分量分析方法对其进行降维、提取特征向量,最后用最近邻分类器分类识别。在ORL和NUST603人脸库上进行实验,结果表明,该方法的识别率优于传统PCA、分块PCA、Gabor小波变换与PCA结合的方法。 相似文献