共查询到19条相似文献,搜索用时 109 毫秒
1.
针对带噪声数据的聚类问题,提出一种基于上下文约束的噪声模糊聚类算法。该算法基于标准的模糊C-均值聚类理论,在修改模糊聚类目标函数的同时,结合问题的实际背景引入上下文模糊集,修改模糊划分空间的约束条件,以减少噪声对聚类结果的影响。实验结果表明:该算法能够有效地避免噪声对聚类的影响,具有很强的鲁棒性。 相似文献
2.
传统的快速聚类算法大多基于模糊C均值算法(Fuzzy C-means,FCM),而FCM对初始聚类中心敏感,对噪音数据敏感并且容易收敛到局部极小值,因而聚类准确率不高。可能性C-均值聚类较好地解决了FCM对噪声敏感的问题,但容易产生一致性聚类。将FCM和可能性C-均值聚类结合的聚类算法较好地解决了一致性聚类问题。为进一步提高算法收敛速度和鲁棒性,提出一种基于核的快速可能性聚类算法。该方法引入核聚类的思想,同时使用样本方差对目标函数中参数η进行优化。标准数据集和人造数据集的实验结果表明这种基于核的快速可能性聚类算法提高了算法的聚类准确率,加快了收敛速度。 相似文献
3.
针对模糊C-均值聚类对初始值敏感、容易陷入局部最优的缺陷,提出了一种基于萤火虫算法的模糊聚类方法。该方法结合萤火虫算法良好的全局寻优能力和模糊C-均值算法的较强的局部搜索特性,用萤火虫算法优化搜索FCM的聚类中心,利用FCM进行聚类,有效地克服了模糊C-均值聚类的不足,同时增强了萤火虫算法的局部搜索能力。实验结果表明,该算法具有很好的全局寻优能力和较快的收敛速度,能有效地收敛于全局最优解,具有较好的聚类效果。 相似文献
4.
一种遗传模糊聚类算法及其应用 总被引:1,自引:1,他引:1
研究一种基于遗传算法的模糊聚类方法,即将遗传算法得到的聚类中心作为模糊C-均值(FCM)聚类算法初值,这样既可以克服FCM算法对初始中心敏感的缺点,也可以解决遗传算法只能找到近似解的问题。将算法用于通信信号的星座聚类,根据聚类有效性函数自适应地确定聚类中心,并完成信号类型的识别。仿真实验证明,当存在较小的定时误差时,算法对PSK和QAM信号仍然是有效的。 相似文献
5.
基于模糊C均值聚类(FCM)的图像分割是应用较为广泛的方法之一,其具有描述简洁、易于实现、分割效果好等优点,但也存在运算时间过长等问题,本文提出了一种新的快速FCM图像分割算法,该算法首先将图像数据划分成一定数量的子集,然后利用区域粗糙度标记所有子集,最后根据子集质心及其权重进行模糊聚类图像分割,仿真实验结果表明,该算法能够以保证图像分割质量为前提,大幅度提高FCM图像分割速度,故具有一定应用价值。 相似文献
6.
曾振东 《计算机工程与应用》2012,48(13):22-26
在综合分析标准的模糊C-均值聚类算法和条件模糊C-均值聚类算法基础上,对模糊划分空间进行修改,进一步弱化模糊划分矩阵的约束,给出一种扩展的条件模糊C-均值聚类算法。算法的划分矩阵和原型不依赖于背景约束及模糊划分矩阵的隶属度总和。实验结果表明:该算法可以得到不同的聚类原型,并具有很好的聚类效果。 相似文献
7.
基于遗传算法和遗传模糊聚类的混合聚类算法 总被引:2,自引:1,他引:2
为了动态确定聚类数目C和该数目下的最优分类,构造出遗传算法和模糊遗传C均值聚类的混合聚类算法(HGA-FGCM),该方法构造了一个既考虑类与类之间的分散程度,又考虑同一类紧凑程度的目标评价函数;运用遗传算法的全局寻优能力,求得最佳聚类数下的最优聚类。 相似文献
8.
一种协同的可能性模糊聚类算法 总被引:1,自引:0,他引:1
模糊C-均值聚类(FCM)对噪声数据敏感和可能性C-均值聚类(PCM)对初始中心非常敏感易导致一致性聚类。协同聚类算法利用不同特征子集之间的协同关系并与其他算法相结合,可提高原有的聚类性能。对此,在可能性C-均值聚类算法(PCM)基础上将其与协同聚类算法相结合,提出一种协同的可能性C-均值模糊聚类算法(C-FCM)。该算法在改进的PCM的基础上,提高了对数据集的聚类效果。在对数据集Wine和Iris进行测试的结果表明,该方法优于PCM算法,说明该算法的有效性。 相似文献
9.
针对模糊局部C-均值聚类算法计算复杂度高且对大数据样本集进行聚类时极为耗时的特点,提出了快速的模糊局部C-均值聚类分割算法。该算法将目标像素点与其邻域像素点构成的共生矩阵引入模糊局部C-均值算法,得到新的聚类隶属度和聚类中心表达式。对像素分类时,利用邻域像素隶属度进行滤波处理,进一步改善了算法的抗噪性。实验结果表明,该算法满足了图像分割有效性的需求,相较于模糊局部C-均值聚类算法,该算法具有更好的分割性能和实时性,能更好地满足实际场合图像分割的需要。 相似文献
10.
直觉模糊C-均值聚类算法研究 总被引:2,自引:0,他引:2
鉴于直觉模糊集理论作为模糊理论的推广已得到广泛的应用,研究了将模糊C-均值聚类推广为直觉模糊C-均值聚类(IFCM)的途径和方法,分析了现有的几种IFCM算法,并提出了一种基于直觉模糊集的模糊C-均值聚类算法.该算法首先定义了直觉模糊集之间的距离;然后构造了聚类的目标函数;最后给出了聚类算法步骤.将算法用于目标识别,实验结果表明了算法的有效性. 相似文献
11.
为解决模糊C-均值(FCM)聚类算法对噪声和孤立点数据敏感、样本分布不均衡的问题,提出了具体的改进和提高的方法:改进隶属度函数,以消除孤立点对聚类结果的影响;为每个样本点赋予一个定量的权值,以区分不同的样本点对于知识发现的不同作用,改善噪音和分布不均衡的样本集的聚类结果。实验结果表明该算法具有更好的健壮性和聚类效果。 相似文献
12.
模糊C均值(FCM)聚类算法广泛应用于图像的自动分割,但标准的FCM算法存在计算量大,运算速度慢等问题。对FCM算法进行改进,提出了一种快速FCM图像分割算法(FFCM),该算法将图像从像素空间映射到其灰度直方图特征空间,并在此基础上,充分利用像素的邻域特性,对隶属度函数做一定改进,实验结果表明该算法能快速有效地分割图像,并具有较好的抗噪能力。 相似文献
13.
A generalized form of Possibilistic Fuzzy C-Means (PFCM) algorithm (GPFCM) is presented for clustering noisy data. A function of distance is used instead of the distance itself to damp noise contributions. It is shown that when the data are highly noisy, GPFCM finds accurate cluster centers but FCM (Fuzzy C-Means), PCM (Possibilistic C-Means), and PFCM algorithms fail. FCM, PCM, and PFCM yield inaccurate cluster centers when clusters are not of the same size or covariance norm is used, whereas GPFCM performs well for both of the cases even when the data are noisy. It is shown that generalized forms of FCM and PCM (GFCM and GPCM) are also more accurate than FCM and PCM. A measure is defined to evaluate performance of the clustering algorithms. It shows that average error of GPFCM and its simplified forms are about 80% smaller than those of FCM, PCM, and PFCM. However, GPFCM demands higher computational costs due to nonlinear updating equations. Three cluster validity indices are introduced to determine number of clusters in clean and noisy datasets. One of them considers compactness of the clusters; the other considers separation of the clusters, and the third one considers both separation and compactness. Performance of these indices is confirmed to be satisfactory using various examples of noisy datasets. 相似文献
14.
基于空间信息的可能性模糊C均值聚类遥感图像分割 总被引:1,自引:0,他引:1
可能性模糊C均值(PFCM)聚类算法作为模糊C均值(FCM)聚类算法的一种改进算法,能在一定程度上克服FCM算法对噪声的敏感性;但由于PFCM没有考虑像元间的空间信息,对含有较大噪声的图像分割效果依然不理想。为此,提出一种新的基于空间信息的PFCM算法(SPFCM),克服了PFCM算法对含有较大噪声的图像分割效果不佳的缺点。通过对人工图像和IKONOS遥感图像进行分析,结果表明,SPFCM算法无论是在视觉上还是在分割正确率上都优于传统的FCM算法、PFCM算法及两种加入空间信息的FCM算法;对于含有高斯噪声和盐椒噪声的图像,平均分割正确率高达99.71%,是一种去噪效果较好的图像分割算法。 相似文献
15.
针对FCM算法的缺点,提出了一种基于改进的FCM的增量式聚类方法。该算法首先对模糊C均值算法进行加权,并将权系数归一化,然后将改进的算法与增量式聚类算法结合。改进的方法既提高了FCM算法的性能,避免了FCM算法的缺陷,并能够实现增量式聚类,避免了大量的重复计算,并且不受孤立点的影响。实验表明该算法的有效性。 相似文献
16.
针对于模糊c-均值(FCM)算法在初始聚类中心选取不佳的情况下容易产生聚类错误划分的情况,从FCM算法出发提出了一种基于笛卡尔乘积的FCM聚类算法(C-FCM),并分析了加权指数m对聚类分析的影响。C-FCM将聚类提高到更高维的空间,有效地避免了FCM 对初值敏感及容易陷入局部极小的缺陷。客运专线列控(TCC)评估测试项目对C-FCM的检验结果表明,与传统FCM算法相比,C-FCM算法更准确,效果更佳,对解决邻站数据包的划分问题是可行、有效的。 相似文献
17.
模糊C均值算法(Fuzzy C-Means,FCM)是目前应用比较广泛的一种聚类算法。FCM算法的聚类质量依赖于初始聚类中心的选择并且易陷入局部极值,结合混合蛙跳算法(Shuffled Frog Leaping Algorithm,SFLA)较强的搜索能力,提出一种基于MapReduce的并行SFLA-FCM聚类算法。该算法利用SFLA算法的子群内模因信息传递和全局信息交换来搜索高质量的聚类中心,根据MapReduce编程模型设计算法流程,实现并行化,使其具有处理大规模数据集的能力。实验证明,并行SFLA-FCM算法提高了的搜索能力和聚类结果的精度,并且具有良好的加速比和扩展性。 相似文献
18.
为了克服模糊C-均值(FCM)聚类算法易陷入局部极小值和对初始值敏感的缺点,提出了一种基于改进量子蚁群的模糊聚类算法。将量子计算原理和蚁群算法相结合来改进FCM算法。初期采用量子遗传算法生成信息素分布,后期利用蚁群算法的全局搜索性、并行计算性等特点避免聚类陷入局部最优解。实验证明该算法保证了种群的多样性,有较好的全局收敛性,克服了模糊C-均值聚类算法的不足,能有效解决未成熟收敛的问题,使聚类问题最终快速、有效地收敛到全局最优解。 相似文献
19.
进行社区发现时,首先从某一节点开始进行随机行走,计算两个节点之间的对称社会距离,并用此距离来分析两个用户节点之间的相关性。社交网络中存在着关系不均匀的现象,有些个体之间关系非常稠密,而有些却异常稀疏,由此构成的虚拟社区需要用特定的社区发现技术进行挖掘。前人提出过利用可能性C均值聚类算法(PCM)和处理好的社会距离进行社区发现,但通过虚拟社区算法评价的准确度指标发现,对于数据量大,数据粘性强的数据,其聚类效果并不理想。而聚类中心的好坏直接决定着聚类性能的好与坏,因此利用类中心约束方法对PCM算法进行改进,得到的新型聚类算法更加适用于真实网络数据集。实验针对真实数据集,利用准确度指标进行了验证。 相似文献