首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
汪朝海  蔡晋辉  曾九孙 《计量学报》2019,40(6):1077-1082
针对传统的振动信号特征提取效率低、诊断时间较长等问题,提出了基于经验模态分解与主成分分析的滚动轴承故障诊断方法。首先利用经验模态分解将振动信号分解为有限个本征模函数和一个残差函数,提取主要的本征模函数能量及其局部平均频率特征,最后将复合特征向量作为主成分分析分类器的输入,完成对故障的识别。实验结果表明:复合特征向量能够有效地反映轴承的运行状态;相比于BP神经网络、支持向量机、K-近邻算法,主成分分析分类法不仅能够准确地识别故障,而且训练时间短、使用方便。  相似文献   

2.
孟宗  吕蒙  殷娜  李晶 《计量学报》2020,41(6):717-723
提出一种改进变分模态分解的轴承故障信号诊断方法。使用改进的奇异值分解降噪方法对信号进行降噪,然后对信号进行变分模态分解;利用分量信号的能量之和占原信号能量的比值,判断变分模态分解的分解效果,从而找出最佳分解层数;根据分量信号间的相关系数,判断中心频率相邻的分量信号是否来自信号中的同一调制部分;最后通过主要分量的包络谱找出故障特征频率,判断故障类型。通过对仿真信号和实际轴承故障信号进行处理,成功提取微弱频率特征信息,验证了该方法的有效性。  相似文献   

3.
自适应经验傅里叶分解(AEFD)是最近提出的非平稳信号分解方法,为了解决AEFD的分割边界集设置问题,提出了基于频谱包络检测的改进自适应经验傅里叶分解(EAEFD)方法,该方法以快速傅里叶变换为基础,以包络熵值最小选择最优的分解模态数目,采用极大值包络技术对傅里叶频谱分割,得到一个合理的分割边界,最后采用逆快速傅里叶变换对每个区间信号进行重构。EAEFD能够自适应地将一个复杂信号分解为若干个瞬时频率具有物理意义的单分量信号之和,通过仿真信号和滚动轴承信号分析,将EAEFD方法与经验小波变换(EWT),经验模态分解(EMD),局部特征尺度分解(LCD)和AEFD等方法进行了对比,结果表明EAEFD方法不仅仅能够有效地诊断出故障特征,而且诊断的精度更高。  相似文献   

4.
经验模态分解理论及其应用   总被引:1,自引:0,他引:1  
阐述了经验模态分解(EMD)的概念、基本理论及其作为一种数据驱动的时频分析方法,能够根据信号特点自适应地将信号分解成一组具有物理意义的固有模态函数的线性组合,十分适合于非线性、非平稳信号分析的机理,然后综述了一维EMD算法在解决包络拟合、边界效应、模态混叠等关键问题上的研究进展,重点对新兴的多维经验模态分解的发展情况进行了详细论述;介绍了EMD在信号去噪,地球物理、生物医学信号处理,电力工程、机械工程故障诊断方面的主要应用,结合EMD研究中的难点问题,指出了下一步研究的五个重要方向。  相似文献   

5.
针对滚动轴承工作环境中含有强烈的环境噪声,其振动信号具有非平稳、非线性特征以及提取特征困难等问题,本文提出一种基于集合经验模态分解(EEMD)的滚动轴承智能故障诊断方法.首先通过卷积神经网络(CNN)提取振动信号关键特征,并将提取到的特征向量输入到支持向量机(SVM)中进行故障识别与分类.为了提高诊断性能,本文利用集合...  相似文献   

6.
经验模态分解(EMD)方法可使滚动轴承振动信号根据自身尺度自适应地分解为若干个内禀模态分量(IMF),滚动轴承发生故障会导致振动能量在各IMF分量上的分布发生变化,结合灰色关联模型建立IMF能量分布与轴承状态之间的对应关系,可实现轴承的状态识别。为改善传统灰关联分析在模式识别方面的缺陷,基于斜率相似的原理构造了能反映曲线形状信息的相似关联度模型,结合传统的接近关联度模型建立了能同时反映曲线位置与形状特性的灰色综合关联度诊断模型。算例结果表明,该方法能准确有效地实现滚动轴承的故障诊断。  相似文献   

7.
基于经验模态分解的多通道有源噪声控制   总被引:1,自引:0,他引:1       下载免费PDF全文
聂永红  程军圣  杨宇  陈建国   《振动与冲击》2013,32(20):189-195
为了提高有源噪声控制系统的降噪效果,提出了基于经验模态分解的多通道有源噪声控制系统。该系统首先采用经验模态分解(Empirical Mode Decomposition,简称EMD)方法对多个噪声源信号分别进行自适应分解,并对分解后的每个信号各个IMF(Intrinsic Mode Function,简称IMF)分量的响度分别进行计算,然后根据各个分量的响度大小进行残差滤波器的设计。与基于A计权曲线设计的残差滤波器相比,该方法所设计滤波器能更好地抑制响度较小的信号频率成分。对车内噪声进行测试并对双通道有源控制系统的降噪效果进行了仿真,结果表明,本文所提出的控制系统比传统滤波-X LMS方法和采用基于A计权残差滤波器系统的主观降噪效果有所改善。  相似文献   

8.
针对水泵电机轴承故障振动信号噪声大和非平稳性的特点,提出了基于经验模态分解的诊断方法;通过对原始信号进行经验模态分解,得到包含故障特征的固有模态分量,从而可以提取出故障频率.该方法应用于外圈、内圈和滚动体故障诊断,取得了很好效果.  相似文献   

9.
提出了一种融合经验模式分解和多元统计的轴承故障诊断新方法,主要包括基于信号Hilbert-Huang变换的特征提取和对故障特征集的主成分分析:首先运用EMD将振动信号分解成不同特征时间尺度的单分量固有模态函数,采取Hilbert-Huang变换获取分解信号的瞬时频率,计算基本模式分量与瞬时频率的统计特征集;之后对统计特征集进行主成分分析,大幅降低特征向量的维数,获取主元特征集;最后利用支持向量机,完成了对于滚动轴承常见三类故障的分类,并分析了振动信号时域频域的统计特征值与故障模式之间的联系。  相似文献   

10.
基于EMD与神经网络的滚动轴承故障诊断方法   总被引:27,自引:17,他引:27  
针对滚动轴承故障振动信号的非平稳特征,提出了一种基于经验模态分解(Empirical Mode Decomposition,简称EMD)和神经网络的滚动轴承故障诊断方法。该方法首先对原始信号进行了经验模态分解,将其分解为多个平稳的固有模态函数(Intrinsic Mode function,简称IMF)之和,再选取若干个包含主要故障信息的IMF分量进行进一步分析,由于滚动轴承发生故障时,加速度振动信号各频带的能量会发生变化,因而可从各IMF分量中提取能量特征参数作为神经网络的输入参数来识别滚动轴承的故障类型。对滚动轴承的正常状态、内圈故障和外圈故障信号的分析结果表明,以EMD为预处理器提取各频带能量作为特征参数的神经网络诊断方法比以小波包分析为预处理器的神经网络诊断方法有更高的故障识别率,可以准确、有效地识别滚动轴承的工作状态和故障类型。  相似文献   

11.
针对滚动轴承故障声信号故障诊断中共振解调滤波参数较难确定以及故障诊断困难的问题,提出一种基于经验模式分解和排列熵的改进滚动轴承故障诊断解调方法.该方法首先对滚动轴承声信号进行经验模式分解,将其分解为多个本征模态分量;然后计算各本征模态分量的排列熵值和相关系数,根据联合系数最大化原则对筛选出的分量进行信号重构;最后,利用...  相似文献   

12.
孟宗  季艳  闫晓丽 《计量学报》2016,37(1):56-61
提出一种基于微分的经验模式分解(DEMD)模糊熵和支持向量机(SVM)相结合的滚动轴承故障诊断方法。首先对信号进行基于微分的经验模式分解,得到若干具有物理意义的本征模函数(IMF)分量,再利用相关度准则对固有模式分量进行筛选,计算所选分量的模糊熵,组成故障特征向量,然后将其作为支持向量机的输入来识别滚动轴承的状态。并将该方法与基于EMD模糊熵和SVM相结合的方法进行比较,实验结果表明该方法对机械故障信号能够更有效准确地进行识别分类。  相似文献   

13.
李继猛  李铭  姚希峰  王慧  于青文  王向东 《计量学报》2020,41(10):1260-1266
针对经典K-奇异值分解算法构造的字典中原子形态受噪声、谐波干扰影响,进而降低冲击故障特征提取精度的问题,提出了基于集合经验模式分解和K-奇异值分解字典学习的冲击特征提取方法。该方法首先利用集合经验模式分解与Hurst指数对振动信号进行预处理,剔除谐波干扰;其次,利用经典K-奇异值分解算法和预处理信号构造超完备字典;然后,利用K-均值聚类算法对字典中的原子进行筛选;最后,利用正交匹配追踪算法实现冲击故障特征的稀疏表示。实验分析和工程应用验证了所提方法的有效性和实用性。  相似文献   

14.
基于经验模式分解(EMD)的齿轮箱齿轮故障诊断技术研究   总被引:10,自引:0,他引:10  
简述了齿轮箱传统信号分析技术与经验模式分解(EMD)技术的异同,并详细论述了EMD的分解原理和富立叶变换的关系。针对齿轮箱振动加速度数据,运用EMD分解技术,得到IMF(Intrinsic Mode Function)模式分量,提出了基于IMF及功率谱(PSD)的IMFPSD216指标和基于IMF及滤波统计的IMFFLT指标,并验证了它们的有效性。运用这些指标正确明显地分辨出齿轮箱齿轮失效。  相似文献   

15.
孟宗  闫晓丽 《计量学报》2015,36(5):482-486
提出基于微分经验模式分解(DEMD)和隐马尔科夫模型(HMM)的旋转机械故障诊断方法,并应用到滚动轴承故障诊断中。首先,对故障信号进行基于微分的经验模式分解,提取瞬时能量作为故障特征向量;然后将故障特征向量输入HMM分类器进行模式识别,输出各状态似然概率值;以最大似然概率所对应的故障状态作为诊断结果,最终实现滚动轴承故障诊断。滚动轴承点蚀故障的诊断实验证明了该方法的有效性。与基于EMD-HMM的故障诊断方法相比,基于DEMD-HMM的故障诊断方法更适用于滚动轴承故障诊断。  相似文献   

16.
时培明  张慧超  伊思颖  韩东颖 《计量学报》2022,43(10):1326-1334
针对实际工程中轴承信号的非线性和非平稳性,提出一种自适应多元变分模态分解算法。多元变分模态的分解效果主要与本征模态数k和惩罚参数α相关,为了解决人为经验参数设置对多元信号分解结果的影响,一种自适应的信号分解算法被提出。具体内容如下:首先将混合灰狼算法与多元变分模态分解算法相结合,提出最小模态重叠分量指标,将其作为适应度函数来寻求(k, α)的最优解,按照最优解对多元信号进行分解,提取故障特征。采用仿真信号和实际数据来验证所提方法的有效性和准确性,通过与多元经验模态分解、级联变分模态分解的对比分析,验证该算法在滚动轴承故障特征提取方面的高效性和实用性。  相似文献   

17.
基于EMD与AR谱的轧机主传动系统故障诊断研究   总被引:1,自引:0,他引:1  
孟宗  顾海燕  刘利晖  袁静 《计量学报》2011,32(4):338-342
针对轧机故障信号的非线性、非平稳特征,研究了一种基于经验模态分解和AR模型功率谱相结合的分析方法。该方法首先对轧机主传动系统的故障信号进行EMD分解,然后通过选取含有故障信息的IMF分量进行AR模型的功率谱分析,从而提取出故障频率,判断引起故障的原因。通过仿真信号和实例验证了该方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号