共查询到15条相似文献,搜索用时 78 毫秒
1.
基于改进Mean Shift和SURF的目标跟踪 总被引:1,自引:0,他引:1
传统颜色直方图的Mean Shift(MS)算法只考虑了目标颜色的统计信息,不包含目标的空间信息,当目标颜色与背景颜色相近或目标对象发生光照变化时,容易导致不准确跟踪或跟踪丢失。针对该问题,提出了一种融合改进MS和SURF的跟踪算法。改进的MS算法根据目标对象的最新外接矩形尺寸,确定对象的分块方法,根据各块的Bhattacharyya系数值,确定各块的权重系数,获得初步的跟踪结果;采用SURF特征匹配和校正的方法对其初步跟踪结果进行调整;采用线性加权的方法融合改进的MS和SURF跟踪结果,得出最终的跟踪结果。实验表明,提出的融合改进MS和SURF的跟踪算法,比传统的MS算法和固定分块的MS算法都具有更好的跟踪性能。 相似文献
2.
针对利用SIFT算法进行车牌精确定位时执行时间较长的问题,提出一种基于多重特征和SURF算法的车牌定位算法。在HSL颜色空间得到车牌候选区域,结合车牌几何特征与纹理特征筛选候选区域并按设定的规则标号;按序提取车牌标号候选区域,并用SURF算法对候选区域精确定位。实验结果表明,SURF算法与SIFT算法相比,在定位准确率相同情况下减少了运行时间,能满足实时性需要。 相似文献
3.
局部特征和全局特征是图像的两种重要的特征描述,在图像分类时起着至关重要的作用。据此提出一种通过融合全局与局部特征核量化图像分类方法。首先,分析全局特征及局部特征各自优缺点,并对图像进行特征提取;其次,通过核方法将特征映射到适当的高维空间中,来进行码书的获取与量化,并进行特征的融合以更好地对图像进行描述;最后,采用基于直方图交叉核的支持向量机对获取的量化特征进行分类。通过实验证明了所提出的方法的可行性。 相似文献
4.
针对现有利用快速鲁棒特征(SURF)进行图像分类的方法中存在的效率低、正确率低的问题,提出一种利用图像SURF集合的统计特征进行图像分类的方法.该方法将SURF的各个维度及尺度信息视为各自独立的随机变量,并利用拉普拉斯响应区分不同数据.首先,获取图像的SURF向量集合;然后,分维度计算SURF向量集合的一阶中心绝对矩、带权一阶中心绝对矩等统计特征,并构建特征向量;最后,结合支持向量机(SVM)进行图像分类.在Corel 1K图像库上的实验结果表明,该方法查准率较SURF直方图方法和三通道Gabor纹理特征方法分别提高17.6%和5.4%.通过与HSV直方图特征进行高级特征融合,可获得良好的分类性能.与SURF直方图结合HSV直方图方法、三通道Gabor纹理特征结合HSV直方图方法、基于视觉词袋(BoVW)模型的多示例学习方法相比,查准率分别提高了5.2%,6.8%,3.2%. 相似文献
5.
提出了一种基于颜色不变量和SURF算法相结合的彩色图像拼接方法。该方法利用图像彩色信息计算得到的颜色不变量信息代替灰度信息作为输入,提取图像SURF特征点并进行特征点匹配,根据相似性变换原理对误匹配点进行过滤,提高变换矩阵计算的准确率,采用亮度渐变原则对重叠区域进行像素平滑过渡,实现图像无缝拼接。实验结果表明,该方法在保持算法的快速性和准确性的同时,获得的配准点多而且准确,采用亮度渐变原则拼接增强了对光照变化的鲁棒性,且有效地消除了拼接痕迹,在图像拼接和地质分析领域有一定的实用价值。 相似文献
6.
针对视频中运动目标的准确跟踪问题,提出了一种改进的颜色直方图特征和SURF特征的粒子滤波跟踪算法。采用SURF算法提取特征点,利用分层迭代的KLT算法对特征点进行稳定跟踪。将SURF特征与改进的视觉显著性颜色特征进行乘性融合,作为粒子滤波的观测概率。针对跟踪过程中SURF匹配数下降和不稳定的现象,设计了SURF特征模板集的更新策略。与传统特征的跟踪进行多组对比实验,其结果证明了该方法对光照和遮挡具有很好的鲁棒性,对目标跟踪的准确率更高。 相似文献
7.
重点论述了基于MI图像特征选择方法[1],简要地讲述了支持向量机的SVMs分类器原理和设计[2]。提出了MI贪婪最优算法,将高维数据处理转化为一维数据处理,简化了运算难度,同时提高了分类速度和准确性。实验结果表明,通过对8个分类、上千张图片进行分类处理,效果好于传统的分类算法。 相似文献
8.
针对复杂背景下汉字匹配准确率较低的问题,提出一种改进的SURF算法。该算法利用灰度分级的字符分割方法,先进行灰度分割增强图像的对比度,采用灰度分级树将图像中的所有像素处理为树的模式进行计算,根据灰度分级确定主节点,根据主节点的级别所对应的灰度值对图像进行分割。同时,根据汉字结构的特殊性,取消了SURF算法的旋转不变性。实验结果表明,与未使用改进的SURF算法相比,对图像质量较差的文本图像,改进的SURF算法能有效地提高其匹配的准确率。 相似文献
9.
对具有不同旋转角度和变化的图像进行匹配是图像识别中的技术难点,SURF算法在多角度图像的特征点检测和匹配过程中存在易受噪声点干扰、产生误匹配从而导致匹配效率低等不足。结合聚类和马氏距离,提出一种改进的多角度SURF图像匹配算法。首先利用聚类算法对原有算法提取的特征点进行噪声剔除处理,生成新的特征点数据集;然后利用马氏距离能够有效考虑整体相关性及其具有仿射不变性等特点,将SURF算法中的欧式距离用马氏距离替代。实验应用于多角度图像匹配时,改进算法较原SURF算法在匹配效率和准确率上有明显提高。 相似文献
10.
视觉传感器在航空无人机导航和定位任务中应用越来越广泛。针对无人机位置参数估计问题,提出了一种基于SURF特征的图像配准算法,该算法能够适应航空序列图像的旋转、尺度变换及噪声干扰,实现无人机位置的精确估计。构建了SURF尺度空间,运用快速Hessian矩阵定位极值点,计算出航空图像的64维SURF特征描述子;基于Hessian矩阵迹完成特征点匹配;使用RANSAC算法剔除出格点,实现位置参数的精确估计。通过航空图像序列实测数据位置估计实验,验证了该算法的有效性。 相似文献
11.
针对SURF算法提取图像特征点较少的问题,提出了一种经直方图均衡化处理,重构SURF尺度空间(R-SURF)的图像特征提取方法。该方法能提高图像特征点检测数目,同时保持较高的匹配率,并且继承SURF算法的良好特性。将算法与SURF和C-SURF算法进行比较实验,结果表明R-SURF具有更好的特征检测能力。 相似文献
12.
为解决图像分类过程中特征点选择的随机性对分类精度造成的影响,提出一种基于图像目标特征空间自学习分类算法。利用基于颜色和纹理特征的多通道局部主动轮廊模型找到图像的目标区域,在目标区域选取特征并对特征稀疏编码建立图像的目标特征空间。为进一步提高图像分类精度建立投票机制下基于图像目标特征空间的自学习算法。实验结果表明,该方法能避免特征选择的随机性对实验结果的影响,有效地提高图像分类的精度。 相似文献
13.
为了解决海上航空遥感图像拍摄目标及相机视角变化快,相似特征多导致的匹配不一致问题,并提高匹配算法的效率,提出了一种基于图结构的航空遥感图像特征点匹配算法。该特征匹配过程分为初始匹配和精确匹配两步,首先采用快速特征提取算法SURF进行特征提取并进行初始匹配,然后在精确匹配过程中充分考虑图像的局部空间结构及全局信息,建立[K]近邻图结构,用[K]近邻结构差异与点集的变换误差作为匹配的收敛条件,以解决图像目标发生变化而导致的[K]近邻结构不一致及[K]近邻结构相同时仍然存在干扰点两个问题,最终实现快速精确的特征匹配。 相似文献
14.
颜色直方图在图像分类系统中有着重要的应用。针对像颜色直方图特征的空间关系,提出空间金字塔颜色直方图作为图像的特征表示。它结合了图像的全局特征以及分块特征的优点。使用支持向量机(SVM)以及常用的4种核函数进行了测试。在corel图像库上的实验结果表明,该特征可以有效地结合全局与空间特征,提高了图像的分类准确率。 相似文献
15.
针对现有掌纹识别算法对掌纹图像在采集过程中的位置、方向、亮度变化缺乏足够的鲁棒性,而且计算复杂度较高的问题,提出了一种基于SURF描述字的掌纹识别算法。算法分为训练与识别两个过程,在训练过程中,提取属于同一类所有训练样本的SURF描述字进行互配,然后计算训练样本中互配频次超过该类样本数的1/2的每个关键点的匹配率及其在匹配训练样本中坐标的均值与方差以及SURF描述字均值、SURF描述字与均值的最大欧氏距离组成类别数据库。在掌纹识别过程,基于SURF提取待识别掌纹图像的关键点,确定关键点的SURF描述字与其位置坐标,然后,计算类别数据库中每个类别的每个关键点与待识别掌纹图像所有关键点模糊匹配度的最大值作为该关键点的模糊匹配度,最后基于模糊推理实现掌纹识别。实验结果表明该算法对掌纹图像的旋转、尺度和亮度的变化具有较好的鲁棒性,具有稳健和高精度的特性,并且识别过程计算成本较低,满足了实时性应用的要求。 相似文献