共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
中厚板轧制过程中力能参数的预报模型 总被引:4,自引:0,他引:4
根据给定的热力耦合热边界条件的计算结果 ,建立了轧制中厚板的二维和三维有限元模型并模拟计算了 (2 30 0~ 2 6 30 )mm× (9~ 72 )mm板坯压下量 7~ 19mm ,轧制速度 3 16~ 4 37m/s ,轧制温度 92 9~10 33℃的轧制力 (2 6 6 0 0~ 5 0 0 0 0kN)和轧制力矩 (780~ 32 0 0kN·m)。结果表明 ,轧制力计算值和测量值的相对偏差为 1 30 %~ 9 37% ,轧制力矩的相对偏差为 3 6 9%~ 9 75 %。二维模拟和三维模拟的结果基本一致。 相似文献
4.
5.
对采用X—H轧制法轧制H型钢的轧制力进行分析,以艾克隆德(Ekelund)公式、西姆斯(R.B.Sims)公式等著名的轧制力公式为基础,参照近年来H型钢轧制力模型的研究成果,采用多元线性回归的方法建立粗轧机、万能轧机、轧边机的轧制力数学模型。 相似文献
6.
流函数法解析厚件平辊轧制 总被引:2,自引:0,他引:2
采用三维流函数速度场按上界法解析了厚件平辊轧制问题。解析中考虑了宽展和侧鼓形的变形特点,以及坯料的宽厚比、辊径、摩擦日子,压下率等主要因素对宽展率和相对单位力的影响。解析结果与实验结果基本相符合。为制订合理的轧制工艺,以及对宽展的估计提供了理论像据和计算方法。 相似文献
7.
以HN800×300连轧过程第3连轧道次的UR和第4连轧道次的UF作为基础道次,采用热力耦合弹塑性有限元方法建立了型钢轧制过程仿真的几何模型,探讨了边界条件的设定问题以及结果处理方法。轧制力计算结果与实测数据对比分析表明:仿真结果与实测数据吻合很好,误差在0.7%~1.8%范围内,仿真方法可作为开展其他研究工作的基础。 相似文献
8.
给出了一种用流函数求解理想刚塑性材料的平面应变轧制的方法。速度场被分解为基础速度场和附加速度场。基础速度场满足边界上给定的速度条件,附加速度场满足齐次边界条件。与这两部分速度场相对应,有基础流函数和附加流函数。基础流函数可以确定地写出,附加流函数则借助于Weierstrass定理写成完备空间的向量族,即多项式。通过使全功率极小化,可以将多项式系数确定。用这一方法求得了速度场、应力场、塑性区前后边界,接触弧上中性点的位置和轧制单位压力,并与工程方法的计算结果作了比较。 相似文献
9.
11.
12.
13.
14.
15.
16.
17.
18.
Three-Dimensional Model for Strip Hot Rolling 总被引:3,自引:0,他引:3
ZHANG Guo-min XIAO Hong WANG Chun-hua 《钢铁研究学报(英文版)》2006,13(1):23-26
Steel stripis widely usedin many fields such asautomobile ,building,transportation and householdappliance ,etc·. Withthei mprovement in productiv-ity and automation of strip processing,the require-ments for crown and flatness of strip have been in-creasingly severe ,and“crown free”steel strips arerequired for some special applications such as for au-tomobile parts andtinplate cans .In order toi mprovethe strip quality , an effective three-di mensionalmodel is needful to further study on the… 相似文献
19.
In hot rolling, the quantities rolling load, torque, and power consumption are important measurable process parameters. For the determination of rolling loads in hot flat rolling processes, like heavy plate rolling, Sims's model 1 is a well‐known approach represented by an analytical formula. The solution of Sims's equation leads to the multiplier Q, which is a function of the roll gap geometry. The rolling load is then computed by applying the width of the plate, the contact length, the multiplier, and an average material flow stress called kfm. This flow stress is commonly recalculated from process data as a function of temperature, pass strain, and a mean strain rate, applying the Sims model itself. One question arises from this method: Are the recalculated flow stresses physically based values or in other words, what is the (physical) meaning or interpretation of these values? The present paper tries to give an answer to this question by determining the influence of the roll gap geometry alternatively by means of a simple 2D FEM model which gives a corresponding multiplier referred to as QFE. Flow stresses are recalculated from a set of process data using both factors. The results are compared to experimental flow stress data from hot compression tests. It is shown, that the recalculated flow stresses using QFE are in better agreement with the laboratory data than the recalculated values using Sims's Q. 相似文献
20.
DONG Yong-gang 《钢铁研究学报(英文版)》2010,17(1):27-32
In rail rolling by universal mill, a simplified 3-dimention theoretical model has been built firstly. The kinematically admissible velocity field of the web, head and base of rail have been determined respectively, moreover the corresponding strain rate field and the strength of shear strain rate have been also obtained. Then the plastic deformation power of corresponding deformation zone, the powers consumed on the velocity discontinuity surface and the powers generated for backward slip and forward slip have been proposed. According to the upper-bound method, the roll force of horizontal roll and two vertical rolls can be obtained. Moreover, The process of 18kg/m light rail and 60kg/m heavy rail universal rolling have been simulated by rigid-plastic FEM(finite element method) for verifying the theoretical model. And the universal rolling experiments of 18kg/m light rail has been accomplished in Yanshan University Rolling Laboratory. Compared the results of numerical simulation and the experimental data, the roll force from upper-bound method is somewhat greater than experimental data but in general do not exceed them by 20 percent. So, it is reliable and feasible to preset and optimize the parameter of rolling technology according to the upper-bound method. 相似文献