首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
欠定盲分离中源的个数估计和分离算法   总被引:2,自引:0,他引:2  
在盲分离问题中,独立元分析一直是一个主要的研究方向,但是该方法不能直接推广到欠定混叠情形.考虑到大量的客观信号具有稀疏特性,稀疏元分析方法引起了人们的广泛关注,其中典型的是"二步法",即先计算混叠矩阵,再分离所有源信号,该方法能够较好地实现欠定混叠情况下的盲分离.在计算混叠矩阵时,通常利用K-均值聚类等,这类方法的成功依赖于聚类数目也即信号源个数的先验知识,而在盲分离问题中,如何估计信号源个数一直是一个很棘手的问题.文中采用模糊聚类方法来确定信号源的个数,同时计算出欠定混叠矩阵,进而利用最短路径法来恢复源信号.该方法进一步完善了"二步法",仿真显示了文中算法的有效性与鲁棒性.  相似文献   

2.
针对欠定盲分离中混合矩阵估计精度不高的问题,采用了改进的人工蜂群(ABC)聚类算法。从观测信号的线性聚类特点和蜂群的多样性考虑,改进雇佣蜂的搜索策略,从而加快算法的收敛速度。同时,引入基于Levy飞行的局部搜索方法,进一步对当前最优解的邻域进行搜索,提高ABC算法局部开发能力。仿真结果表明,该方法在源个数较多的情况下仍然有较高的混合矩阵估计精度。  相似文献   

3.
传统稀疏算法对信号的稀疏程度要求高、抗噪能力差。针对该问题,从K-SCA假设出发,提出一种基于超平面隶属度函数的欠定盲源分离算法。该函数基于局部统计,具有良好的抗噪性能,适用于噪声和信号稀疏程度较低条件下的信号分离。实验结果表明,相比同类算法,该算法对信号稀疏要求低、分离精度高、容噪能力强。  相似文献   

4.
采用线性阵列对欠定盲源分离问题进行建模,研究源信号的空间分布对欠定盲源分离的影响.利用二步法和稀疏分量分析解决欠定盲源分离问题,其中,混合矩阵的估计主要利用稀疏源信号的线性混合信号沿混合矩阵列向量方向线性聚类的特性.理论分析和仿真实验结果表明,当源信号在空间处于某些特定区域时,若采用线性聚类方法,混合矩阵是不可估计的,...  相似文献   

5.
两步法是解决稀疏信号欠定盲分离的一种常用方法,通常首先利用K-means聚类算法估计混叠矩阵,然后利用最短路径法恢复源信号。在使用K-means聚类算法时要求知道源信号的数目,而现实中往往不知道源信号的数目,需要对其进行估计。因此研究了聚类有效性评价指标——BWP指标,结合粒子群算法,提出了一种改进的确定源信号数目的算法,并将这种算法引入到欠定盲分离。实验表明,提出的算法在保证分离精度的同时能缩短分离时间,并可节省一定的内存,在观测信号数据量大时,这种优势更加明显。  相似文献   

6.
传统聚类算法进行混叠矩阵估计时存在的聚类中心个数不确定和初始聚类中心的随机选取导致陷入局部最优的问题,为此提出一种基于密度峰值的改进模糊聚类算法进行欠定盲源分离的混叠矩阵估计。通过短时傅里叶变换提取信号在频域中的稀疏特性,利用寻找密度峰值聚类算法(clustering by fast search and find of density peaks, CFSFDP)自动获取聚类簇的数目和初始聚类中心;将获得的聚类数目和聚类结果作为模糊聚类算法(fuzzy c-means clustering, FCM)的初始输入参数,提高FCM聚类结果的精度。实验结果表明,该算法可以准确估计源信号的数目,相比传统FCM、层次聚类、基于密度峰值改进的粒子群等聚类算法,可以有效提高欠定盲源分离的混叠矩阵估计精度。  相似文献   

7.
针对源信号的稀疏性影响欠定混合矩阵的估计精度, 在源信号单源频率及非单源频率分量分析的基础上,通过对观测信号频率峰值的幅值比值所 构成的列向量聚类,提出欠定条件下弱稀疏源信号混合矩阵的盲估计方法。鉴于经典聚类算 法的局部收敛性带来聚类结果的不稳定性,采用全局收敛特性较好的遗传模拟退火聚类算法 提高聚类结果的鲁棒性。仿真实验表明,本文提出的混合矩阵估计方法及采用的聚类算法 在不同欠定条件及噪声环境下具有较强的估计性能。  相似文献   

8.
提出了一种基于两步法的欠定盲源分离新算法。在混合矩阵估计阶段,采用基于势函数的聚类方法,在源信号恢复阶段,提出一种快速的稀疏信号重构算法,通过定义一个连续可微函数来近似[?0]范数,使得[?0]范数可解。该算法的特点是实现简单、速度快。仿真实验表明,与现有的采用快速[?1]范数最小化和OMP算法的欠定盲源分离方法相比,提出的算法在保证分离性能的前提下大幅度提高了算法的运行速度。  相似文献   

9.
非负矩阵分解(NMF)要求分解得到的左矩阵为列满秩,这限制了它在欠定盲分离(UBSS)中的应用。针对此问题,提出基于带行列式和稀疏性约束的NMF的欠定盲分离算法——DSNMF。该算法在基本NMF的基础上,对NMF得到的左矩阵进行行列式准则约束,对右矩阵进行稀疏性约束,平衡了重构误差、混合矩阵的唯一性以及分离信号的稀疏特性,实现了对混合矩阵和源信号的欠定盲分离。仿真结果表明,在源信号稀疏性较好和较差两种情况下,DSNMF都能取得良好的分离效果。  相似文献   

10.
传统的基于K均值聚类算法及最小路径法的欠定盲源分离(BSS)两步法存在K值难以确定、对初始值敏感、噪声和奇异点难以排除以及相对缺乏理论依据等诸多不足。针对以上问题,提出了基于势函数及压缩感知理论的新型两步算法。首先利用多峰值粒子群寻优算法改进的势函数法来估计混合矩阵;然后利用估计矩阵来构建传感矩阵,并将基于正交匹配追踪的压缩感知算法引入欠定盲源分离过程中;最后实现源信号的重构。仿真实验结果表明,混合矩阵最高估计精度达到99.13%,重构信号干扰比均高于10 dB,很好地满足了重构精度的要求,验证了所提算法的有效性。所提算法对一维混合信号的欠定盲源分离具有良好的普适性和较高的准确率。  相似文献   

11.
蚁群聚类组合方法的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
基于蚁群算法的聚类算法已经在当前的数据挖掘研究中得到应用。针对蚁群聚类算法早期出现的缺点,提出一种蚁群聚类组合方法使其得以改进。改进思路是引入K-means作为蚁群算法的预处理过程。通过K-means快速、粗略地确定聚类中心,利用K-means方法的结果作为初值,再进行蚁群算法聚类。有效地解决了蚁群算法早期收敛过慢等问题。  相似文献   

12.
蚁群算法的离散性、并行性、鲁棒性、正反馈性特点,非常适合于图像分割.但基本蚁群算法中蚂蚁运动的随机性使得算法进化速度慢且易于陷入局部最小等缺陷.提出了一种基于改进的蚁群模糊聚类的图像分割方法,给出了多种信息素的更新方式.针对算法循环次数多,计算量大的问题,综合考虑图像中像素的灰度,邻域平均灰度,梯度等特征来设置初始聚类中心进行蚁群模糊聚类.实验结果表明,该方法在图像分割中的确能够得到较好的分割结果.  相似文献   

13.
研究了欠定情形下的信号盲分离。充分利用信号的时频特性,提出了AR模型功率谱估计法滑动估计信号频率,设计带通滤波器近似获取源信号和欠定混合矩阵,以及扩展子空间向量基构造完备观测信号的方法,将问题转化为完备情况下的盲分离,最后运用FastICA方法实现了信号盲分离。仿真实验数据表明方法的可行性和有效性,为欠定盲分离问题研究提供了新的思路。  相似文献   

14.
蚁群聚类算法研究及应用   总被引:2,自引:1,他引:2  
聚类作为数据挖掘技术的重要组成部分,在很多领域有着广泛应用.蚁群算法是近几年研究的一种新算法,该算法采用分布式并行计算和正反馈机制,具有易于与其它方法相结合的优点.根据蚁群算法在聚类中的应用及改进型式的不同,文章主要介绍了几种基本的流行的蚁群聚类算法,分析了它们的不同之处,并对蚁群聚类算法今后的研究方向作了展望.  相似文献   

15.
基于稀疏性的欠定语音盲分离方法研究   总被引:1,自引:0,他引:1  
针对源信号增多导致语音信号稀疏性变差的问题,提出一种新的基于稀疏性的混合矩阵估计方法,利用主分量分析(PCA)检测只有一个源信号存在的时频点并用于估计混合矩阵,从而提高了估计性能,特别适用于欠定语音盲分离。同时指出了影响基于稀疏性语音盲分离方法性能的因素。仿真结果验证了上述结论。  相似文献   

16.
基于模糊矩阵的蚁群聚类算法研究与应用   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了基于模糊矩阵的数据聚类模型,其中引入了聚类过程的全局性控制模糊矩阵,描述了数据聚类的过程;提出了基于模糊矩阵的蚁群聚类算法,实验结果证明了算法的正确性和高效性。  相似文献   

17.
针对基本蚁群聚类算法较长时间开销和易产生冗余聚类数目的缺陷,提出了一种基于动态邻域的多载蚁群聚类算法。算法通过邻域动态自适应调整寻找纯净的邻域,增强蚂蚁记忆体记忆纯净邻域的大小,蚂蚁之间协同交流进行多载整合相似邻域形成最终聚类结果。实验结果表明新算法能有效提高算法效率且取得较好的聚类效果。  相似文献   

18.
改进了LF算法,提出了一种基于模糊集理论的蚁群聚类新方法。首先定义了平均距离,其次在“相似”的概念上引入模糊集理论,定义了数据对象与其邻域内对象相似程度的隶属函数,最后该数据对象的拾起或放下由隶属度与置信水平λ相比较来决定。该算法避免了LF算法中不相似的数据对象本该被拾起而可能未被拾起,相似的数据对象本该被放下而可能未被放下的弊端,并简化了LF算法。  相似文献   

19.
基于蚁群聚类的历史灾害分级方法   总被引:1,自引:0,他引:1  
贾志娟  胡明生  刘思 《计算机应用》2012,32(4):1030-1032
针对历史灾害记录的描述性、简约性问题,提出一种基于蚁群聚类的历史灾害分级方法。利用灰色关联分析方法对灾害数据进行归一化处理后,再通过蚁群自动聚类的结果来划分历史灾害的等级,以避免人为的主观任意性干扰。通过与其他分级方法的性能对比,实验结果证明该方法具有较高的精确性和实用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号