首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li(Ni1/3Co1/3Mn1/3)1-2xMgxAlxO2的合成与电化学性能   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法在900℃于空气中煅烧合成了层状复合掺杂型正极材料Li(Ni1/3Co1/3Mn1/3)1-2xMgxAlxO2(x=0,0.01,0.02,0.05).通过X-射线衍射(XRD)、扫描电镜(SEM)和电化学测试等研究了掺杂元素对Li(Ni1/3Co1/3Mn1/3)O2的结构和电化学性能的影响.结果表明,适量Mg、Al掺入Li(Ni1/3Co1/3Mn1/3)O2后降低了材料的阳离子混排程度,且晶胞参数随着掺杂量的增加而增加.合成材料颗粒分布比较均匀,平均粒径约为0.5 μm.在充放电倍率为0.1 C和电压范围为3.0~4.3 V的条件下,与未掺杂样品相比,Mg-Al复合掺杂的样品具有更好的电化学性能和容量保持率.当x=0.02时,复合掺杂样品的首次放电容量和库仑效率分别为153 mAh/g和93.0%,20个循环后容量保持率达93.4%.因此Mg-Al复合掺杂锂离子电池正极材料Li(Ni1/3Co1/3Mn1/3)1-2xMgxAlxO2是很有前景的.  相似文献   

2.
采用Ni0.88Co0.10Mn0.02(OH)2前驱体,LiOH·H2O为锂源,加入适量的硼酸和ZrO2,分别在810、820和830℃条件下进行烧结,制备了Zr和B共掺杂型LiNi0.88Co0.10Mn0.02O2单晶材料。对其进行了X射线衍射仪(XRD)、扫描电子显微镜(SEM)、充放电比容量、倍率性能、循环性能和差示扫描量热(DSC)等测试。结果显示,Zr和B共掺杂可改善LiNi0.88Co0.10Mn0.02O2单晶材料的倍率性能、循环性能以及材料的热稳定性。在820℃烧结得到样品NCM-820,其比容量为198.5 mAh/g,25℃循环50次的容量保持率为96.37%,45℃循环40次容量保持率为94.13%,材料热分解温度从231.8℃提升到了240.4℃。  相似文献   

3.
将层状的LiNi1/3Co1/3Mn1/3O2锂离子电池正极材料与尖晶石型的LiMn2O4按质量比为2∶98混合烧结,采用X射线衍射(XRD)、循环伏安法(CV)、交流阻抗(EIS)以及充放电测试研究LiMn2O4对LiNi1/3Co1/3Mn1/3O2电化学性能的影响。研究表明混合LiMn2O4有利于提高LiNi1/3Co1/3Mn1/3O2正极材料的首次库仑效率、循环性能和倍率性能,在3.0~4.3 V以1 C循环,首次放电比容量和库仑效率分别为150.3 m Ah/g和85.5%,循环50次后容量保持率为88.9%;在5 C下充放电仍保持136.2 m Ah/g。循环伏安与交流阻抗测试表明混合2%(质量分数)LiMn2O4可以提升材料的可逆性和放电容量,降低电荷转移电阻。  相似文献   

4.
采用溶胶凝胶法制备尖晶石型高电压正极材料LiNi_(0.5)Mn_(1.5)O_4,并掺杂F-与之对比。分别采用X射线衍射仪、电子扫描显微镜、热重分析仪、电化学工作站和充放电测试仪对合成材料的物相、形貌和电化学性能进行表征。结果表明,0.5C倍率下LiNi_(0.5)Mn_(1.5)O_4首次放电比容量高达141.6 mAh/g,接近于理论比容量146.7 mAh/g。提高倍率40次循环后,5C比容量仍有111.8 mAh/g,而F-掺杂样品仅有92 mAh/g。然后从5C返回到1C,比容量为129.9 mAh/g,与1C初始容量相比,容量保持率高达96.4%,LiNi_(0.5)Mn_(1.5)O_4显示出更加优异的倍率循环性能。  相似文献   

5.
使用Mg2+掺杂LiMn2O4获得黑色正极材料,并用石墨烯进行表面包覆处理,获得掺杂、包覆锂离子电池正极材料,用X-射线衍射仪(XRD)、扫描电镜(SEM)、循环伏安(CV)、交流阻抗(EIS)、倍率充放电对材料进行表征。实验结果表明:掺杂Mg2+材料为尖晶石结构,结晶度增加;表面为球形结构,增强电池安全性;包覆材料的电池大电流充放电性能增加,可逆比容量增加;在倍率充放电电流为0.2C时,包覆质量分数为2%的石墨烯(GO)放电比容量为107mAh/g。包覆材料改善了电池的循环性能,在倍率充放电电流为0.2C时,54次循环后,其可逆比容量为92mAh/g,容量保持率为92.12%。  相似文献   

6.
闻雷  其鲁  徐国祥  张敬华 《电源技术》2006,30(8):653-656
以共沉淀碳酸盐为前驱体制备了层状LiNi1/3Mn1/3Co1/3O2正极材料,采用X射线衍射(XRD)、扫描电子显微镜(SEM)、充放电测试、差分计时电位等方法研究了其结构与电化学性能,同时研究了F-掺杂对于材料电化学性能和结构的影响。SEM分析表明,LiNi1/3Mn1/3Co1/3O2产物基本为球形颗粒。F-掺杂后,粉末形状变得不规则。LiNi1/3Mn1/3Co1/3O2材料在2.5~4.4V电位区间内,首次放电比容量为162mAh·g-1,50次循环后容量保持率为93.2%。适量的F-掺杂能显著提高材料的循环性能,F-掺杂量z为0.1时,50次循环后容量保持率为98.1%。  相似文献   

7.
在氢氧化物共沉淀法制备前驱体的过程中添加纳米Al2O3,进行Al掺杂,考察掺杂量x对Li(Ni1/3Co1/3Mn1/3)1-x AlxO2形貌和电化学性能的影响。x=0.02的产物以0.2 C在2.7~4.2 V充放电,第50次循环的容量保持率为95.7%,高于未掺杂样品的81.5%,循环性能随着放电倍率的增大而提高。  相似文献   

8.
李春霞  陈白珍  闵德  刘志立 《电池》2007,37(3):223-225
以Ni1/3Co1/3Mn1/3(OH)2为前驱体,用高温固相反应法合成了锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2和Li(Ni1/3Co1/3Mn1/3)0.98Zr0.02O2.XRD和电化学性能测试的结果表明:掺杂Zr材料的阳离子混排程度降低,层状结构的规整性提高;掺Zr材料的电化学性能优于LiNi1/3Co1/3Mn1/3O2,虽然首次充放电容量稍有降低,但首次充放电效率达到94.4%,循环100次后的容量保持率为99.5%;在60 ℃下,掺杂Zr材料最终状态的电池内阻为67.0 mΩ,循环100次后的容量保持率为92.1%.高温性能的改善,是因为Zr有效地抑制了由材料结构不稳定所引发的正极材料与电解液间的反应.  相似文献   

9.
以Ni0.5Co0.2Mn0.3(OH)2和Li2CO3为原料,TiO2和ZnO为掺杂剂,制备出不同含量钛锌离子复合掺杂的锂离子电池正极材料LiNi0.5Co0.2Mn0.3O2。用XRD、SEM、恒电流充放电、交流阻抗法和循环伏安方法分别研究了不同掺杂量对LiNi0.5Co0.2Mn0.3O2的结构、形貌和其电化学性能的影响。结果表明3%(摩尔分数)的Ti、Zn离子复合掺杂能有效提高LiNi0.5Co0.2Mn0.3O2的倍率放电能力和循环性能。在1C和2C的充放电倍率下,首次放电容量分别为170.4mAh/g和164.8mAh/g,经过50次充放电循环后容量保持率分别为96.3%和94.7%,具有优良的电化学性能。  相似文献   

10.
利用流变相法合成LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2,再以ZnO为Zn源对LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2进行掺杂改性合成Li(Ni1/3Co1/3Mn1/3)1-x-MxO2(M=Zn,x=0.005,0.01,0.02,0.05),研究了不同掺杂量对材料粒径、结构及电化学性能的影响。结果表明:Zn掺杂并未改变材料晶型,掺杂Zn样品仍具有α-NaFeO_2层状结构(空间组群为R3m),随着掺杂量的增加,前驱体粒径增大,其离子混排度随着掺杂量的增加而增大;掺杂Zn后的材料在低倍率(0.1C)充放电条件下的首次放电比容量提高,其中掺杂量为1.0%的材料循环效果最佳,其首次放电比容量为182 mA h/g,循环50次后容量保持率为97.7%。  相似文献   

11.
溶胶凝胶法合成LiMn2-xCoxO4及其性能研究   总被引:2,自引:0,他引:2  
为了改善LiMn2 O4 作为锂离子蓄电池正极材料的循环可逆性能 ,我们采用溶胶 凝胶法掺杂合成了形如LiMn2 x CoxO4 的化合物 ,并用粉末X射线衍射技术 (XRD)研究了产物的晶体结构与电化学性能的关系。研究结果表明 ,在掺杂量 (即x值 )不是很大时 ,材料都能保持较好的尖晶石结构。在LiMn2 O4 中掺杂Co可明显地改善LiMn2 O4 的循环可逆性能。当x =0 .0 5时 ,5 0次循环后的容降由LiMn2 O4 的 10 %降低到 4%。同时 ,掺Co还可提高材料的大电流放电性能。当x =0 .1时 ,1C倍率放电容量与 0 .2C倍率放电容量的百分比值由LiMn2 O4 的 78%提高到 89%。  相似文献   

12.
三元正极材料有望成为新能源汽车动力电池首选材料,为改善三元材料性能,采用氢氧化物共沉淀-固相合成工艺制备出一系列正极材料Li [(Ni_(1/3)Co_(1/3)Mn_(1/3))_(1-x-y-z)M1_xM2_yM3_z]O_2(0≤x≤0.05、0≤y≤0.05、0≤z≤0.05;M1=Al、M2=Mg、M3=Cu)并与市售三元材料进行对比。XRD、SEM以及电化学测试结果表明:制得的材料均为α-NaFe0_2层状结构,其中三元材料LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2为类球状形貌,比市售三元颗粒细小,在1 C、2.7~4.3 V下循环50周,保持率为91.56%,在0.1 C、2.7~4.3 V下循环100周,保持率高达92.46%,和商用材料相比,容量值和循环性能相当,倍率性能不佳。此外,本研究还分析了两种及三种掺杂元素同时存在对正极材料的影响:掺杂后材料粒度变小,当掺杂含量为0.05时,高含量的掺杂离子损害了电池性能;当掺杂含量为0.01时,材料Li[(Ni_(1/3)Co_(1/3)Mn_(1/3))_(0.97)Al_(0.01)Mg_(0.01)Cu_(0.01)]O_2的倍率性能明显提高,2 C和5 C倍率下的放电比容量分别为112和98.6 mAh/g。  相似文献   

13.
Mg-F共掺杂对Li1.1(Ni1/3Co1/3Mn1/3)O2电化学性能的影响   总被引:1,自引:1,他引:0  
采用溶胶-凝胶法合成正极材料层状Li1.1[Ni1/3Co1/3Mn(1/3-x)Mgx]O2-yFy(0≤x≤0.04,0≤y≤0.04)。通过原子吸收光谱(AAS)、X射线衍射(XRD)、扫描电镜(SEM)和电化学测试等手段研究了掺杂元素对材料结构和电化学性能的影响。结果表明,镁氟掺杂后的样品具有单相的典型六方晶系结构,合成材料颗粒分布比较均匀。在充放电倍率为0.1 C和电压范围为3.0 ̄4.3 V的条件下,与未掺杂样品相比,Li1.1[Ni1/3Co1/3Mn(1/3-0.04)Mg0.04]O2-0.04F0.04具有较高的放电比容量和容量保持率。其首次放电比容量和库仑效率分别为158 mAh/g和91.3%,20个循环后容量保持率达92.1%。Li1.1[Ni1/3Co1/3Mn(1/3-0.04)Mg0.04]O2-0.04F0.04是一种有前景的锂离子电池新型正极材料。  相似文献   

14.
NaO_(0.44)MnO_2具有开放的框架和三维隧道结构,是一种优良的钠离子电池正极材料。采用固相法制备了Al~(3+)掺杂的Na_(0.44)MnO_2,并通过形貌、结构分析以及各种电化学手段研究了Al~(3+)掺杂对Na_(0.44)MnO_2材料储钠性能的影响。研究结果表明,适量的Al~(3+)掺杂能有效提高Na_(0.44)MnO_2材料的倍率和循环性能。Al~(3+)掺杂量为1%(Al与Mn的摩尔比为0.01:0.99)的样品在30 C(1 C=120 mA/g)的电流密度下具有76.5 mAh/g的放电比容量,且在1 C下循环1 000次之后容量保持率高达70.0%。相比之下,未掺杂的样品在30 C下的比容量仅有45.7 mAh/g,且在1 C下循环1 000次之后容量保持率仅为47.0%。这些结果表明掺杂Al~(3+)能够在一定程度上提高Na_(0.44)MnO_2在循环过程中的稳定性,提高Na~+在Na_(0.44)MnO_2中的嵌入/脱出反应速度,为发展高容量和高稳定性钠离子电池正极材料提供了一种新途径。  相似文献   

15.
改性钛酸锂负极材料的合成及性能   总被引:1,自引:0,他引:1  
钟志强  岳敏 《电源技术》2008,32(2):99-101
研究了一种改性钛酸锂负极材料的合成工艺及其性能,着重考察了烧结温度、烧结时间、石墨微粉掺杂量、原料配比(nLi∶nTi)对产物首次放电比容量和容量保持率的影响,确定了适宜的合成工艺条件。在烧结温度为950℃、烧结时间为14h、石墨微粉掺杂质量分数为5%,nLi∶nTi为0.84的条件下,钛酸锂的首次放电比容量为173.2mAh/g,与其理论值175mAh/g非常接近,100次循环后的容量保持率为92.7%;当倍率为10C时其比容量在157mAh/g左右,约为1C时比容量的94%。  相似文献   

16.
以Li2CO3、Co3O4为原料,采用高温固相法制备了锂离子电池正极材料LiCo0.98-xTi0.02LaxO2(x=0,0.01,0.03,0.05)。采用扫描电镜(SEM)、恒流充放电研究了材料的表面形貌和电化学性能,结果表明:掺杂La后材料的D50略有增大,放电平台电压升高;在2.75~4.20 V电位范围内,LiCo0.97Ti0.02La0.01O2的首次1 C放电比容量达到143.86 mAh/g,50次循环后容量保持率为97.0%,且具有很好的倍率性能。  相似文献   

17.
以Li2CO3、Co3O4为原料,采用高温囿相法制备了钮离子电池正极材料LiCo0.98-xTi0.02LaxO2(x=0,0.01,0.03,0.05).采用扫描电镜(SEM)、恒流充放电研究了材料的表面形貌和电化学性能,结果表明:掺杂La后材料的D50略有增大,放电平台电压升高;在2.75~4.20 V电位范围内,LiCo0.97Ti0.02La0.01O2的首次1 C放电比容量达到143.86 mAh/g,50次循环后容量保持率为97.0%,且具有很好的倍率性能.  相似文献   

18.
采用草酸盐共沉淀法制备了锂离子电池用稀土元素镧掺杂层状正极材料LiNi1/3Co1/3-xLaxMn1/3O2(0x1),考察了镧掺杂对其结构与电化学性能的影响。XRD与电化学性能测试结果表明,层状正极材料LiNi1/3Co1/3-0.04La0.04Mn1/3O2具有较好的层状结构和综合电化学性能。表征阳离子的混排程度的峰强比I(003)/I(104)=1.2491.2,表示六角晶格的有序性的R因子R=0.5。在2.8~4.2 V(vs.Li/Li+)电压范围,0.1 C倍率的首次放电比容量为147.56 mAh/g,首次充放电效率为94%,0.2 C倍率循环20次后继续以0.5 C倍率循环20次的可逆比容量为141.7 mAh/g,为首次放电比容量的96.0%。SEM结果表明,颗粒平均粒径约1.2 mm,形状近似于球形。  相似文献   

19.
正极材料Li_3V_(2-x)Cr_x(PO_4)_3/C的制备及性能   总被引:1,自引:0,他引:1  
用溶胶-凝胶法制备了锂离子电池正极材料Li3V2-xCrx(PO4)3/C(x=0,0.05、0.10和0.20).用XRD、SEM、充放电、循环伏安和电导率测试等方法,研究了Cr掺杂对样品的影响.样品均为单相,尽管在低倍率(0.2 C)下的初始比容量随着x的增加而下降,但适量的Cr掺杂可改善循环及倍率性能.Li3V1.90Cr0.10(PO4)3/C以0.2 C和4.0 C充放电的首次放电比容量分别为171.4 mAh/g和130.2 mAh/g,第100次循环时的容量保持率分别为78.6%和88.9%.  相似文献   

20.
用溶胶-凝胶法结合高温后退火处理合成了掺杂Cr的LiNi0.5-0.5yCryMn1.5-0.5yO4(y=0.05,0.10,0.15,0.00),通过X射线衍射(XRD)、恒流充放电测试表征了材料的结构、电化学性能。结果表明,在电压范围为3.5~5.0 V内,LiNi0.45Cr0.1Mn1.45O4电化学性能最好,首次放电容量可达136.2mAh/g,0.1 C循环20次后,容量保持率99.7%;1 C倍率循环50次后,容量仍然有116.2 mAh/g,基本不衰减,大倍率循环有良好的容量和循环性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号