共查询到19条相似文献,搜索用时 109 毫秒
1.
提出一种新颖的基于子采样和非负矩阵分解(NMF)的稳健图像摘要算法.算法首先将原始输入图像进行子采样得到一系列子图像,其次利用子采样图像的列相似性进行非负矩阵分解,最后由分解系数得到摘要序列.实验结果表明本算法对常见图像处理操作稳健,对恶意篡改敏感,同时用户密钥的使用保证了算法的安全性. 相似文献
2.
利用欧几里得距离衡量非负矩阵非负满秩分解的近似度,将其转化为最小二乘法求最优问题。并用VC6.0与Lingo对算法进行程序实现,可以为非负矩阵分解应用研究提供一些参考。 相似文献
3.
4.
针对基于内容的音频检索中由于噪声造成的查找失败问题,本文提出了一种对噪声鲁棒的基于音频指纹因子的音频特征提取算法和一种半监督的音频字典训练算法,以提高噪声下音频检索的精度。本文方法从Mel谱中提取音频指纹,利用非负矩阵分解算法将指纹分解为对噪声鲁棒的频率因子和时间因子作为特征。同时通过提出的半监督音频字典训练算法进行音频字典训练,本文方法使用音效集计算基本音效的分布空间作为初始字典,在量化数据的同时动态更新字典以实现对数据的准确描述。实验结果表明,在低信噪比条件下本文提出的算法的平均查询精度明显高于其他算法。 相似文献
5.
非负矩阵分解方法是基于局部特征的特征提取方法,已经成功用于人脸识别。研究基于非负矩阵分解的人脸图像识别的改进算法是一个有重要意义的研究课题。采用二维非负矩阵分解方法(2DNMF)和对角非负矩阵分解方法(DiaNMF),并且使用正交的基矩阵进行Matlab实验。实验结果表明,以上改进措施能够有效提高人脸图像识别的正确率。 相似文献
6.
非负矩阵分解方法是基于局部特征的特征提取方法,已经成功用于人脸识别。研究基于非负矩阵分解的人脸图像识别的改进算法是一个有重要意义的研究课题。采用二维非负矩阵分解方法(2DNMF)和对角非负矩阵分解方法(Di-aNMF),并且使用正交的基矩阵进行Matlab实验。实验结果表明,以上改进措施能够有效提高人脸图像识别的正确率。 相似文献
7.
8.
提出一种基于非负矩阵分解NMF(Non-negative Matrix Factorization)的数字水印算法.先通过NMF构造载体图像基于部分表示的系数矩阵,将灰度水印图像嵌入其中;再利用NMF基矩阵作为密钥提取水印.为了说明有效性,该算法与主流的DCT水印算法进行相关比较实验,结果表明该算法同DCT算法一样有效,且在抗剪切和抗滤波性能上优于DCT算法. 相似文献
9.
10.
由于要配准的目标存在可能的形变,震前和震后遥感图像的配准变得很困难。为了解决这个问题,提出基于稳健的投影非负矩阵分解(RPNMF)的配准方法来精确的配准形变目标。给出一种稳健的投影非负矩阵分解方法来获得震前震后形变目标的共同投影空间,利用在共同投影空间的投影来配准形变目标。为验证该算法的有效性,做了两个实验:2008年5月12日汶川地震前后的SAR图像的配准;唐家山堰塞湖的变化检测。与现有方法进行比较,结果表明该方法能够有效地得到形变目标的共同投影空间,并取得了很好的配准结果;同时,堰塞湖的变化检测也得到了很好的结果。 相似文献
11.
为了解决现有数字水印中鲁棒性和不可感知性之间的矛盾,设计了一种基于非负矩阵分解和离散小波变换的图像零水印算法。原始图像进行不重叠分块,分别对每子块图像进行3级小波分解得到低频近似分量;对细节分量作非负矩阵分解得到可近似表示子块图像的基矩阵和系数矩阵;将系数矩阵量化得到特征向量,通过特征向量和水印的运算得到原始图像的版权信息。实验结果表明该方案对常见信号处理具有很强的鲁棒性,同时密钥的使用保障了算法的安全性。 相似文献
12.
为了获取更充分的人脸特征信息以提高识别性能,应用加权小波变换和流形正则化非负矩阵分解的方法实现人脸识别。采用小波变换,提取训练样本人脸图像的加权高频分量和低频分量的特征信息;应用流形正则化非负矩阵分解方法,在保持人脸特征数据原始几何结构和局部特征的基础上获取最终的识别特征;利用最近邻方法进行分类识别。将该算法在ORL人脸库和YALE人脸库上进行测试验证,结果表明,与传统的非负矩阵分解方法相比,其识别率高出5%左右,且计算时间很低,说明该方法耗时短,效率高。 相似文献
13.
刘积芬 《计算机工程与应用》2012,48(30):117-121
直接对高维网络连接数据进行处理会出现维数灾难问题,因此,需要对其进行维数约简。非负矩阵分解不仅能对高维数据进行降维,而且使矩阵在分解后的所有分量均为非负值,符合网络连接数据的语义特征。将其应用到入侵检测中,把高维数据投影到低维可视空间上,用散点来表示网络连接记录,通过观察散点所处位置来判断其所属类别,实现入侵检测的可视化。实验验证了这种入侵检测方法的有效性。 相似文献
14.
针对现有的基于非负矩阵分解的隐私保护数据挖掘方法中,不区分样本的重要性的不同,对所有样本都进行同样强度扰动的问题进行改进。提出了一种结合样本选择的基于非负矩阵分解的隐私保护分类方法。该方法使用样本选择将原始样本区分为重要的和不重要的两类。在对数据进行扰动时,使用现有的基于非负矩阵分解的方法对所有样本进行扰动。随后利用非负矩阵分解的聚类性质,对不重要的样本进行附加扰动。实验表明,该方法在保持数据可用性的同时,可以对隐私信息提供更好的保护。 相似文献
15.
通过对投影非负矩阵分解(NMF)和二维Fisher线性判别的分析,针对NMF的特征提取存在无监督学习以及特征维数高的问题,提出了组合2DFLDA监督的非负矩阵分解和独立分量分析(SPGNMFICA)的特征提取方法。首先对样本进行投影梯度的非负矩阵分解,将得到的NMF子图像进行二维Fisher线性判别,主要反映类间差异信息构建子空间;对子空间的向量进行独立分量分析(ICA),得到独立分量特征空间;其次将样本在独立分量特征空间上进行投影;最后使用径向基网络对投影系数进行识别。通用人脸库ORL和YALE的识别实验证明,该算法是一种有效的特征提取和识别方法。 相似文献
16.
动态WNMF及在图像融合中的应用研究 总被引:1,自引:0,他引:1
标准非负矩阵分解图像融合算法全局特征提取能力有限,造成融合图像的对比度不高,视觉效果不好,针对这一问题,对加权非负矩阵分解算法进行了深入研究,提出了动态加权非负矩阵分解思想并将之应用于红外与可见光图像融合.动态加权非负矩阵分解算法首先通过加权系数的设计指定重要特征,并在迭代过程中根据各区域相对重要程度的变化对加权系数进行动态调整,与标准非负矩阵分解算法相比较,动态加权非负矩阵分解算法全局特征提取能力得到了显著提升.对比实验表明,相对于目前常见标准非负矩阵分解图像融合算法,采用区域突变度作为目标函数的动态加权非负矩阵分解算法平均梯度提高了36%以上,标准差提高了17%以上. 相似文献
17.
非负矩阵分解(non-negative matrix factorization,NMF)算法是在矩阵中所有元素均为非负的条件下对其实现的非负分解,基于非负矩阵分解的图像特征提取技术通过将图像表示为一系列非负基图像非减的叠加组合来提取图像的特征,这种特征提取方法不但具有良好的局部表征特性、有一定的稀疏性,而且对遮挡、光照不均及图像质量较差等情形具有卓越的效果。自正式提出以来,该方法得到了许多改进,但目前关于这些改进的综述都只是罗列了这些方法,并没有系统深入地分析,因而在大量阅读文献的基础上分析其内部联系,分类总结了非负矩阵分解的研究进展和各种改进方法的实质。首先介绍非负矩阵分解的基本思想,以手指静脉图像为例说明其应用于图像特征提取的方式,然后重点深入讨论了非负矩阵分解方法的改进算法,提出了非负矩阵分解应用中有待进一步研究的新问题。 相似文献
18.
作为流程工业中控制系统的重要组成部分,执行器的正常工作对确保生产过程的安全性和可靠性具有重要意义.针对处于动态调节中的执行器,提出一种基于核鲁棒非负矩阵分解(KRNMF)的故障检测方法.首先,利用正常状态下的历史数据构建流量特性曲线,获取完备的动态工况训练集.其次,为克服运行数据动态特征、非线性特征,在核非负矩阵分解的基础上引入稀疏误差矩阵,隔离异常数据.同时,构造新的SPE统计量并使用核密度估计确定其控制限.通过DAMADICS仿真、水箱平台以及火电厂减温水调节阀实际数据的对比实验,验证了该方法的有效性. 相似文献
19.
目的 随着Web2.0技术的进步,以用户生成内容为中心的社交网站蓬勃发展,也使得基于图像标签的图像检索技术越来越重要。但是,由于用户标注时的随意性和个性化,导致用户提交的图像标签不够完备,降低了图像检索的准确性。方法 针对这一问题,提出一种正则化的非负矩阵分解方法来丰富图像欠完备的标签,提高图像标签的完备性。利用非负矩阵分解的方法将原始的标签-图像矩阵投影到潜在的低秩空间里消除噪声,同时利用图像的类内视觉离散度作为正则化项提高消除噪声、丰富标签的效果。结果 利用从社交网站Flickr上下载的大量社交图像进行对比实验,验证了本文方法对丰富图像标签的有效性。通过对比目前流行的优化算法,本文算法获得较高的性能提升,算法平均准确度提高了12.3%。结论 将图像类内视觉离散度作为正则化项的非负矩阵分解算法,能较好地丰富社交图像的标签,解决网络图像标签的欠完备问题。 相似文献