共查询到15条相似文献,搜索用时 62 毫秒
1.
视觉选择性注意模型的应用是当今认知信息处理领域的研究热点。根据人类视觉感知理论,在介绍具有代表性的视觉注意模型(Itti模型)的基础上,在特征提取的初级阶段引入新的低层视觉特征,形成一种新的引导注意的显著图,从而实现较为准确的目标检测。结果证明该方法在一定程度上避免了漏检测现象的发生,使得注意区域更能接近生物视觉系统的实际。 相似文献
2.
提出一种基于视觉注意机制的运动目标跟踪方法。该方法借鉴人类的视觉注意机制的研究成果,建立视觉注意机制的计算模型,计算视频中各部分内容的视觉显著性。结合视觉显著性计算结果,提取视频图像中的显著性目标。利用颜色分布模型作为目标的特征表示模型,与视频中各显著目标进行特征匹配,实现目标的跟踪。在多个视频序列中进行实验,并给出相应的实验结果及分析。实验结果表明,提出的目标检测与跟踪算法是正确有效的。 相似文献
3.
提出一种基于视觉注意机制的彩色图像分割方法。受生物学启发,该方法模仿人类自下而上的视觉选择性注意过程,提取图像的底层特征,构造相应的显著图。根据显著图,检测出图像中的显著区域;将显著区域和背景分离,即得到图像分割结果。在多幅自然图像上进行实验,结果表明,该方法能够取得与人类视觉系统一致的分割结果。 相似文献
4.
提出一种基于视觉注意的自然场景彩色图像支持向量机(Support Vector Machine,SVM)分割方法。基于人类视觉注意机制将图像进行预分割,得到图像的显著区域和非显著区域,利用形态学操作对得到的图像进行处理,并自动选取和标注SVM的训练样本,用训练后的SVM分类器对整幅图像进行分割。该方法充分利用视觉注意机制方法的有效信息,解决了其边界不确定的缺陷,并且结合具有很好泛化性能的SVM学习方法,在无需先验知识以及任何人工干预的情况下,实现对自然场景图像的分割。为验证算法的有效性,分别从加州大学伯克利分校图像数据库及互联网选取多幅彩色图像进行实验,实验结果表明:该方法的分割结果不仅与人类视觉注意结果相一致,而且与伯克利图像数据库中人工标注结果相比,得到较好分割效果。 相似文献
5.
结合视觉显著区检测的特点,本文提出一种面向视觉注意区域检测的运动分割方法。该方法用一种层次聚类方法将特征点的运动轨迹进行聚类。首先用中值偏移算法扩大了不同类型运动之间特征向量的差距,同时缩小了相同运动类型的差别。继而,用一种无监督聚类算法,将不同类型的运动进行分割,同时自动获得运动分类数。最后利用运动分割结果,提出一种结合空间和颜色采样的运动显著区域生成方法。与以往方法相比,该方法能够将不同类型的运动自动进行分割,生成的视觉注意区域更为准确,而且稳定性大幅提高。实验结果证明了该方法的有效性和稳定性。 相似文献
6.
显著性目标检测是遥感图像处理的重要研究领域,传统的方法通过逐个像素点的计算来实现目标检测,难以满足遥感图像大面积实时处理的要求。将视觉注意机制应用到遥感图像的显著性目标检测中,在训练阶段,将所有的目标融合成目标类,所有的背景融合成背景类,目标类的显著性均值与背景类的显著性均值的比值得到一个权重向量;在检测阶段,所有的特征图乘以权重向量得到自顶向下的显著性图;自顶向下和自底向上的显著性图融合生成全局显著性图。实验结果表明当目标和背景不是总成对出现时,该方法的检测结果优于Navalpakkam模型和Frintrop模型的检测结果。 相似文献
7.
提出一种利用视觉显著性对图像进行分割的方法。首先提取图像的底层视觉特征,从局部显著性、全局显著性和稀少性3个方面计算各特征图像中各像素的视觉显著性,得到各特征显著图;对各特征显著图进行综合,生成最终的综合显著图。然后对综合显著图进行阈值分割,得到二值图像,将二值图像与原始图像叠加,将前景和背景分离,得到图像分割结果。在多幅自然图像上进行实验验证,并给出相应的实验结果和分析。实验结果表明,该方法正确有效,具有和人类视觉特性相符合的分割效果。 相似文献
8.
桂小玲 《数字社区&智能家居》2011,(8):1857-1859
提出了一种基于显著区域的图像分割方法.该方法首先根据自底向上的人类视觉注意模型计算出图像的综合显著图.以便反映出图像中各区域的重要程度;然后在此基础上,设计了两种分割算法,分别是基于1-D直方图最大熵法的区域分割和基于注意焦点的区域增长,其中注意焦点从显著图中得到;并结合显著图和分割图,以区域的平均显著度为依据提取显著... 相似文献
9.
针对大多数视觉注意模型都采用简单加权线性融合的方式获取显著图,提出了一个更符合生物学机制的基于贝叶斯推理的多线索视觉注意模型,模拟视觉系统腹侧通路与背侧通路中的视觉注意过程,采用贝叶斯推理的方式集成自顶向下与自底向上的信息,同时还集成了多种视觉线索,包括形状、颜色和上下文等.利用该模型进行遥感影像中的目标检测与定位的结果表明,该模型能有效的检测出目标并给出目标所在的位置. 相似文献
10.
11.
提出了一种新的基于可见光图像的海上小目标检测方法。由于频率调谐方法将图像空间域整体均值与高斯滤波后差分结果,作为显著性度量的标准,因此当图像背景中存在较多杂波干扰时,显著目标检测效果不理想。提出的方法对基于频率调谐的显著性检测方法进行了改进,首先对图像LAB空间中3个特征分量进行分块,在每个分块区域中应用频率调谐显著性检测方法,进而将其结果合并为总显著图,以检测海上小目标。该方法克服了频率调谐方法,当海面背景中存在大量海杂波,无法有效提取小目标的缺陷。实验结果表明了该方法的有效性。 相似文献
12.
基于视觉注意机制的彩色图像显著性区域提取 总被引:2,自引:0,他引:2
图像显著性区域提取是计算机视觉处理的重要步骤。结合人类视觉心理、生理模型, 提出一种基于视觉注意机制的彩色图像显著性区域提取模型。通过改进的分水岭算法对彩色图像进行预分割, 从而将原图像分成若干子区域, 在此基础上运用提出的区域化空间注意力模型对各个子区域进行显著图计算, 得到最终的显著性区域提取结果。实验结果表明, 提出的显著性区域提取算法可以很好地从彩色图像中得到与视觉注意机制相一致的结果, 且满足实时性要求, 与传统方法相比, 算法提取的区域更完整、更准确。 相似文献
13.
基于视觉注意力计算的运动目标检测方法研究 总被引:1,自引:0,他引:1
为了更准确地在全局运动视频场景中检测运动目标,提出了一种基于运动注意力和粒子滤波自底向上和自顶向下相结合的运动目标检测方法。基于多尺度可变块运动估计估计运动矢量场(Motion Vector Filed,MVF),构建运动注意力模型,得到运动注意力显著图,继而得到运动注意力的初始分布;采用自顶向下的基于目标颜色信息的粒子滤波算法,调整运动注意力的分布状况;使注意力集中到待测目标上,并提取出待测运动目标。实验结果表明,该方法在全局运动场景中能更加准确地检测目标。 相似文献
14.
为实现复杂图像场景下的物体检测,提出整合视觉注意机制与局部描述子技术的检测模型.通过计算探测场景的显著图及提取其SIFT局部描述子特征,采用层次化的匹配策略对任务物体与探测场景进行关键点匹配以实现物体检测.该策略能将匹配范围界定于场景中富含物体区分性信息的显著区域,并且匹配的门限也可由这些区域的显著性自适应地调节.定性及定量的对比实验验证了该模型的性能. 相似文献
15.
目的 为研究多场景下的行人检测,提出一种视觉注意机制下基于语义特征的行人检测方法。方法 首先,在初级视觉特征基础上,结合行人肤色的语义特征,通过将自下而上的数据驱动型视觉注意与自上而下的任务驱动型视觉注意有机结合,建立空域静态视觉注意模型;然后,结合运动信息的语义特征,采用运动矢量熵值计算运动显著性,建立时域动态视觉注意模型;在此基础上,以特征权重融合的方式,构建时空域融合的视觉注意模型,由此得到视觉显著图,并通过视觉注意焦点的选择完成行人检测。结果 选用标准库和实拍视频,在Matlab R2012a平台上,进行实验验证。与其他视觉注意模型进行对比仿真,本文方法具有良好的行人检测效果,在实验视频上的行人检测正确率达93%。结论 本文方法在不同的场景下具有良好的鲁棒性能,能够用于提高现有视频监控系统的智能化性能。 相似文献